Gender detection in children’s speech utterances for human-robot interaction

The human voice speech essentially includes paralinguistic information used in many real-time applications. Detecting the children’s gender is considered a challenging task compared to the adult’s gender. In this study, a system for human-robot interaction (HRI) is proposed to detect the gender in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-10, Vol.12 (5), p.5049
Hauptverfasser: Badr, Ameer Abdul-Baqi, Abdul-Hassan, Alia Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 5049
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 12
creator Badr, Ameer Abdul-Baqi
Abdul-Hassan, Alia Karim
description The human voice speech essentially includes paralinguistic information used in many real-time applications. Detecting the children’s gender is considered a challenging task compared to the adult’s gender. In this study, a system for human-robot interaction (HRI) is proposed to detect the gender in children’s speech utterances without depending on the text. The robot's perception includes three phases: Feature’s extraction phase where four formants are measured at each glottal pulse and then a median is calculated across these measurements. After that, three types of features are measured which are formant average (AF), formant dispersion (DF), and formant position (PF). Feature’s standardization phase where the measured feature dimensions are standardized using the z-score method. The semantic understanding phase is where the children’s gender is detected accurately using the logistic regression classifier. At the same time, the action of the robot is specified via a speech response using the text to speech (TTS) technique. Experiments are conducted on the Carnegie Mellon University (CMU) Kids dataset to measure the suggested system’s performance. In the suggested system, the overall accuracy is 98%. The results show a relatively clear improvement in terms of accuracy of up to 13% compared to related works that utilized the CMU Kids dataset.
doi_str_mv 10.11591/ijece.v12i5.pp5049-5054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766672684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766672684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-b3b6f2541e4e798f3169c9345d6505092da18b60a6e1ee72a3a4db9259df10ed3</originalsourceid><addsrcrecordid>eNotkN1KwzAUx4MoOObeIeB1Z5Lm81KGTmHojV6HNDmlGVtbk1bwztfw9XwSu86rc-D8Pw4_hDAla0qFoXdxDx7Wn5RFse57QbgpBBH8Ai2YYqxgQunLaSdaF1oRfY1WOceKcK44UVIs0MsW2gAJBxjAD7FrcWyxb-IhJGh_v38yzj2Ab_A4DJBc6yHjuku4GY-uLVJXdcPkOJ1m9w26qt0hw-p_LtH748Pb5qnYvW6fN_e7wlOuhqIqK1kzwSlwUEbXJZXGm5KLIKf3iWHBUV1J4iRQAMVc6XioDBMm1JRAKJfo9pzbp-5jhDzYfTemdqq0TEkpFZOaTyp9VvnU5Zygtn2KR5e-LCV2BmhngHYGaM8A7Qlg-QeYkGhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766672684</pqid></control><display><type>article</type><title>Gender detection in children’s speech utterances for human-robot interaction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Badr, Ameer Abdul-Baqi ; Abdul-Hassan, Alia Karim</creator><creatorcontrib>Badr, Ameer Abdul-Baqi ; Abdul-Hassan, Alia Karim</creatorcontrib><description>The human voice speech essentially includes paralinguistic information used in many real-time applications. Detecting the children’s gender is considered a challenging task compared to the adult’s gender. In this study, a system for human-robot interaction (HRI) is proposed to detect the gender in children’s speech utterances without depending on the text. The robot's perception includes three phases: Feature’s extraction phase where four formants are measured at each glottal pulse and then a median is calculated across these measurements. After that, three types of features are measured which are formant average (AF), formant dispersion (DF), and formant position (PF). Feature’s standardization phase where the measured feature dimensions are standardized using the z-score method. The semantic understanding phase is where the children’s gender is detected accurately using the logistic regression classifier. At the same time, the action of the robot is specified via a speech response using the text to speech (TTS) technique. Experiments are conducted on the Carnegie Mellon University (CMU) Kids dataset to measure the suggested system’s performance. In the suggested system, the overall accuracy is 98%. The results show a relatively clear improvement in terms of accuracy of up to 13% compared to related works that utilized the CMU Kids dataset.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i5.pp5049-5054</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Datasets ; Feature extraction ; Gender ; Human engineering ; Position measurement ; Robots ; Speech recognition ; Standardization</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-10, Vol.12 (5), p.5049</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3622-608X ; 0000-0002-6835-8872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Badr, Ameer Abdul-Baqi</creatorcontrib><creatorcontrib>Abdul-Hassan, Alia Karim</creatorcontrib><title>Gender detection in children’s speech utterances for human-robot interaction</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>The human voice speech essentially includes paralinguistic information used in many real-time applications. Detecting the children’s gender is considered a challenging task compared to the adult’s gender. In this study, a system for human-robot interaction (HRI) is proposed to detect the gender in children’s speech utterances without depending on the text. The robot's perception includes three phases: Feature’s extraction phase where four formants are measured at each glottal pulse and then a median is calculated across these measurements. After that, three types of features are measured which are formant average (AF), formant dispersion (DF), and formant position (PF). Feature’s standardization phase where the measured feature dimensions are standardized using the z-score method. The semantic understanding phase is where the children’s gender is detected accurately using the logistic regression classifier. At the same time, the action of the robot is specified via a speech response using the text to speech (TTS) technique. Experiments are conducted on the Carnegie Mellon University (CMU) Kids dataset to measure the suggested system’s performance. In the suggested system, the overall accuracy is 98%. The results show a relatively clear improvement in terms of accuracy of up to 13% compared to related works that utilized the CMU Kids dataset.</description><subject>Datasets</subject><subject>Feature extraction</subject><subject>Gender</subject><subject>Human engineering</subject><subject>Position measurement</subject><subject>Robots</subject><subject>Speech recognition</subject><subject>Standardization</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkN1KwzAUx4MoOObeIeB1Z5Lm81KGTmHojV6HNDmlGVtbk1bwztfw9XwSu86rc-D8Pw4_hDAla0qFoXdxDx7Wn5RFse57QbgpBBH8Ai2YYqxgQunLaSdaF1oRfY1WOceKcK44UVIs0MsW2gAJBxjAD7FrcWyxb-IhJGh_v38yzj2Ab_A4DJBc6yHjuku4GY-uLVJXdcPkOJ1m9w26qt0hw-p_LtH748Pb5qnYvW6fN_e7wlOuhqIqK1kzwSlwUEbXJZXGm5KLIKf3iWHBUV1J4iRQAMVc6XioDBMm1JRAKJfo9pzbp-5jhDzYfTemdqq0TEkpFZOaTyp9VvnU5Zygtn2KR5e-LCV2BmhngHYGaM8A7Qlg-QeYkGhk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Badr, Ameer Abdul-Baqi</creator><creator>Abdul-Hassan, Alia Karim</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3622-608X</orcidid><orcidid>https://orcid.org/0000-0002-6835-8872</orcidid></search><sort><creationdate>20221001</creationdate><title>Gender detection in children’s speech utterances for human-robot interaction</title><author>Badr, Ameer Abdul-Baqi ; Abdul-Hassan, Alia Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-b3b6f2541e4e798f3169c9345d6505092da18b60a6e1ee72a3a4db9259df10ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Feature extraction</topic><topic>Gender</topic><topic>Human engineering</topic><topic>Position measurement</topic><topic>Robots</topic><topic>Speech recognition</topic><topic>Standardization</topic><toplevel>online_resources</toplevel><creatorcontrib>Badr, Ameer Abdul-Baqi</creatorcontrib><creatorcontrib>Abdul-Hassan, Alia Karim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badr, Ameer Abdul-Baqi</au><au>Abdul-Hassan, Alia Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gender detection in children’s speech utterances for human-robot interaction</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>5049</spage><pages>5049-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>The human voice speech essentially includes paralinguistic information used in many real-time applications. Detecting the children’s gender is considered a challenging task compared to the adult’s gender. In this study, a system for human-robot interaction (HRI) is proposed to detect the gender in children’s speech utterances without depending on the text. The robot's perception includes three phases: Feature’s extraction phase where four formants are measured at each glottal pulse and then a median is calculated across these measurements. After that, three types of features are measured which are formant average (AF), formant dispersion (DF), and formant position (PF). Feature’s standardization phase where the measured feature dimensions are standardized using the z-score method. The semantic understanding phase is where the children’s gender is detected accurately using the logistic regression classifier. At the same time, the action of the robot is specified via a speech response using the text to speech (TTS) technique. Experiments are conducted on the Carnegie Mellon University (CMU) Kids dataset to measure the suggested system’s performance. In the suggested system, the overall accuracy is 98%. The results show a relatively clear improvement in terms of accuracy of up to 13% compared to related works that utilized the CMU Kids dataset.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i5.pp5049-5054</doi><orcidid>https://orcid.org/0000-0003-3622-608X</orcidid><orcidid>https://orcid.org/0000-0002-6835-8872</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2022-10, Vol.12 (5), p.5049
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2766672684
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Datasets
Feature extraction
Gender
Human engineering
Position measurement
Robots
Speech recognition
Standardization
title Gender detection in children’s speech utterances for human-robot interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gender%20detection%20in%20children%E2%80%99s%20speech%20utterances%20for%20human-robot%20interaction&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Badr,%20Ameer%20Abdul-Baqi&rft.date=2022-10-01&rft.volume=12&rft.issue=5&rft.spage=5049&rft.pages=5049-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i5.pp5049-5054&rft_dat=%3Cproquest_cross%3E2766672684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766672684&rft_id=info:pmid/&rfr_iscdi=true