Recommender systems: a novel approach based on singular value decomposition

Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-12, Vol.12 (6), p.6513
Hauptverfasser: Colace, Francesco, Conte, Dajana, Santo, Massimo De, Lombardi, Marco, Paternoster, Beatrice, Santaniello, Domenico, Valentino, Carmine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 6513
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 12
creator Colace, Francesco
Conte, Dajana
Santo, Massimo De
Lombardi, Marco
Paternoster, Beatrice
Santaniello, Domenico
Valentino, Carmine
description Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems represent the most promising solutions to overcome the problem of the so-called information overload, analyzing users' needs and preferences. Recommender systems (RS) are applied in different sectors with the same goal: to help people make choices based on an analysis of their behavior or users' similar characteristics or interests. This work presents a different approach for predicting ratings within the model-based collaborative filtering, which exploits singular value factorization. In particular, rating forecasts were generated through the characteristics related to users and items without the support of available ratings. The proposed method is evaluated through the MovieLens100K dataset performing an accuracy of 0.766 and 0.951 in terms of mean absolute error and root-mean-square error.
doi_str_mv 10.11591/ijece.v12i6.pp6513-6521
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766672291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766672291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-4debca9d2f6998a19c11481d8310c978aa1a70ec9f3a8204ca58a7a4034090df3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EElXpf7DEOcXrOH5wQxUvUQkJwdnaOA6kSuJgJ5X670lbTrOHmd3ZjxAKbA1QGLhrdt759R54I9fDIAvIM1lwuCALrjjPeKH05TwzrTOtmL4mq5SakgmhBFOyWJC3D-9C1_m-8pGmQxp9l-4p0j7sfUtxGGJA90NLTL6ioaep6b-nFiPdYzt5Wh3TQ0jN2IT-hlzV2Ca_-tcl-Xp6_Ny8ZNv359fNwzZzINSYicqXDk3Fa2mMRjAOQGiodA7MGaURARXzztQ5as6Ew0KjQsFywQyr6nxJbs9753K_k0-j3YUp9vNJy5WUcv7cwOzSZ5eLIaXoazvEpsN4sMDsiZ490bMnevZMzx7p5X9kb2Zi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766672291</pqid></control><display><type>article</type><title>Recommender systems: a novel approach based on singular value decomposition</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Colace, Francesco ; Conte, Dajana ; Santo, Massimo De ; Lombardi, Marco ; Paternoster, Beatrice ; Santaniello, Domenico ; Valentino, Carmine</creator><creatorcontrib>Colace, Francesco ; Conte, Dajana ; Santo, Massimo De ; Lombardi, Marco ; Paternoster, Beatrice ; Santaniello, Domenico ; Valentino, Carmine</creatorcontrib><description>Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems represent the most promising solutions to overcome the problem of the so-called information overload, analyzing users' needs and preferences. Recommender systems (RS) are applied in different sectors with the same goal: to help people make choices based on an analysis of their behavior or users' similar characteristics or interests. This work presents a different approach for predicting ratings within the model-based collaborative filtering, which exploits singular value factorization. In particular, rating forecasts were generated through the characteristics related to users and items without the support of available ratings. The proposed method is evaluated through the MovieLens100K dataset performing an accuracy of 0.766 and 0.951 in terms of mean absolute error and root-mean-square error.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i6.pp6513-6521</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Data exchange ; Ratings ; Recommender systems ; Singular value decomposition</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-12, Vol.12 (6), p.6513</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8486-6861 ; 0000-0002-6103-594X ; 0000-0002-9712-1364 ; 0000-0003-2798-5834 ; 0000-0002-8671-4869 ; 0000-0002-5783-1847 ; 0000-0001-9964-1104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Colace, Francesco</creatorcontrib><creatorcontrib>Conte, Dajana</creatorcontrib><creatorcontrib>Santo, Massimo De</creatorcontrib><creatorcontrib>Lombardi, Marco</creatorcontrib><creatorcontrib>Paternoster, Beatrice</creatorcontrib><creatorcontrib>Santaniello, Domenico</creatorcontrib><creatorcontrib>Valentino, Carmine</creatorcontrib><title>Recommender systems: a novel approach based on singular value decomposition</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems represent the most promising solutions to overcome the problem of the so-called information overload, analyzing users' needs and preferences. Recommender systems (RS) are applied in different sectors with the same goal: to help people make choices based on an analysis of their behavior or users' similar characteristics or interests. This work presents a different approach for predicting ratings within the model-based collaborative filtering, which exploits singular value factorization. In particular, rating forecasts were generated through the characteristics related to users and items without the support of available ratings. The proposed method is evaluated through the MovieLens100K dataset performing an accuracy of 0.766 and 0.951 in terms of mean absolute error and root-mean-square error.</description><subject>Data exchange</subject><subject>Ratings</subject><subject>Recommender systems</subject><subject>Singular value decomposition</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtPwzAQhC0EElXpf7DEOcXrOH5wQxUvUQkJwdnaOA6kSuJgJ5X670lbTrOHmd3ZjxAKbA1QGLhrdt759R54I9fDIAvIM1lwuCALrjjPeKH05TwzrTOtmL4mq5SakgmhBFOyWJC3D-9C1_m-8pGmQxp9l-4p0j7sfUtxGGJA90NLTL6ioaep6b-nFiPdYzt5Wh3TQ0jN2IT-hlzV2Ca_-tcl-Xp6_Ny8ZNv359fNwzZzINSYicqXDk3Fa2mMRjAOQGiodA7MGaURARXzztQ5as6Ew0KjQsFywQyr6nxJbs9753K_k0-j3YUp9vNJy5WUcv7cwOzSZ5eLIaXoazvEpsN4sMDsiZ490bMnevZMzx7p5X9kb2Zi</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Colace, Francesco</creator><creator>Conte, Dajana</creator><creator>Santo, Massimo De</creator><creator>Lombardi, Marco</creator><creator>Paternoster, Beatrice</creator><creator>Santaniello, Domenico</creator><creator>Valentino, Carmine</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8486-6861</orcidid><orcidid>https://orcid.org/0000-0002-6103-594X</orcidid><orcidid>https://orcid.org/0000-0002-9712-1364</orcidid><orcidid>https://orcid.org/0000-0003-2798-5834</orcidid><orcidid>https://orcid.org/0000-0002-8671-4869</orcidid><orcidid>https://orcid.org/0000-0002-5783-1847</orcidid><orcidid>https://orcid.org/0000-0001-9964-1104</orcidid></search><sort><creationdate>20221201</creationdate><title>Recommender systems: a novel approach based on singular value decomposition</title><author>Colace, Francesco ; Conte, Dajana ; Santo, Massimo De ; Lombardi, Marco ; Paternoster, Beatrice ; Santaniello, Domenico ; Valentino, Carmine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-4debca9d2f6998a19c11481d8310c978aa1a70ec9f3a8204ca58a7a4034090df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data exchange</topic><topic>Ratings</topic><topic>Recommender systems</topic><topic>Singular value decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Colace, Francesco</creatorcontrib><creatorcontrib>Conte, Dajana</creatorcontrib><creatorcontrib>Santo, Massimo De</creatorcontrib><creatorcontrib>Lombardi, Marco</creatorcontrib><creatorcontrib>Paternoster, Beatrice</creatorcontrib><creatorcontrib>Santaniello, Domenico</creatorcontrib><creatorcontrib>Valentino, Carmine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colace, Francesco</au><au>Conte, Dajana</au><au>Santo, Massimo De</au><au>Lombardi, Marco</au><au>Paternoster, Beatrice</au><au>Santaniello, Domenico</au><au>Valentino, Carmine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommender systems: a novel approach based on singular value decomposition</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>6513</spage><pages>6513-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems represent the most promising solutions to overcome the problem of the so-called information overload, analyzing users' needs and preferences. Recommender systems (RS) are applied in different sectors with the same goal: to help people make choices based on an analysis of their behavior or users' similar characteristics or interests. This work presents a different approach for predicting ratings within the model-based collaborative filtering, which exploits singular value factorization. In particular, rating forecasts were generated through the characteristics related to users and items without the support of available ratings. The proposed method is evaluated through the MovieLens100K dataset performing an accuracy of 0.766 and 0.951 in terms of mean absolute error and root-mean-square error.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i6.pp6513-6521</doi><orcidid>https://orcid.org/0000-0001-8486-6861</orcidid><orcidid>https://orcid.org/0000-0002-6103-594X</orcidid><orcidid>https://orcid.org/0000-0002-9712-1364</orcidid><orcidid>https://orcid.org/0000-0003-2798-5834</orcidid><orcidid>https://orcid.org/0000-0002-8671-4869</orcidid><orcidid>https://orcid.org/0000-0002-5783-1847</orcidid><orcidid>https://orcid.org/0000-0001-9964-1104</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2022-12, Vol.12 (6), p.6513
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2766672291
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Data exchange
Ratings
Recommender systems
Singular value decomposition
title Recommender systems: a novel approach based on singular value decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommender%20systems:%20a%20novel%20approach%20based%20on%20singular%20value%20decomposition&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Colace,%20Francesco&rft.date=2022-12-01&rft.volume=12&rft.issue=6&rft.spage=6513&rft.pages=6513-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i6.pp6513-6521&rft_dat=%3Cproquest_cross%3E2766672291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766672291&rft_id=info:pmid/&rfr_iscdi=true