Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells
Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode s...
Gespeichert in:
Veröffentlicht in: | Environmental science. Nano 2023-01, Vol.10 (1), p.158-165 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 1 |
container_start_page | 158 |
container_title | Environmental science. Nano |
container_volume | 10 |
creator | Chen, Huina Jiang, Demin Xie, Hao Liu, Yuxin Li, Shishi Wang, Yuqiao |
description | Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts. |
doi_str_mv | 10.1039/d2en00980c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2766652308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766652308</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7d4d8b3e01c78fd16356e2f1aa85d737498a091d8e9a4d9917fda59824baec023</originalsourceid><addsrcrecordid>eNo9jU1LxDAYhIMouKx78RcEPNfNmzRfN6X4BYt70atLmryVLrVZkxTcf29F8TTD8MwMIZfAroEJuw4cR8asYf6ELDiTUBlQcPrvpTgnq5z3jDEALoXSC_LWTHx708T1cxXiAQP1LrVxpC5TN5a-db5g6t0w58UNx1wy7WKi8ev4jiNNGCZf-pnvR_rR-xTbH7abcC7gMOQLcta5IePqT5fk9f7upXmsNtuHp-Z2Ux3AiFLpUAfTCmTgtekCKCEV8g6cMzJooWtrHLMQDFpXB2tBd8FJa3jdOvSMiyW5-t09pPg5YS67fZzSOF_uuFZKSS6YEd-DEFYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766652308</pqid></control><display><type>article</type><title>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Huina ; Jiang, Demin ; Xie, Hao ; Liu, Yuxin ; Li, Shishi ; Wang, Yuqiao</creator><creatorcontrib>Chen, Huina ; Jiang, Demin ; Xie, Hao ; Liu, Yuxin ; Li, Shishi ; Wang, Yuqiao</creatorcontrib><description>Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/d2en00980c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antibacterial agents ; Antibiotics ; Antiinfectives and antibacterials ; Biochemical fuel cells ; Biofilms ; Biofouling ; Carbon ; Catalysts ; Cathodes ; Charge density ; Chemical reduction ; Copper oxides ; Density ; Electron transfer ; Fuel cells ; Fuel technology ; Kinetics ; Maximum power density ; Microorganisms ; Oxidoreductions ; Oxygen ; Oxygen reduction reactions</subject><ispartof>Environmental science. Nano, 2023-01, Vol.10 (1), p.158-165</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Huina</creatorcontrib><creatorcontrib>Jiang, Demin</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Shishi</creatorcontrib><creatorcontrib>Wang, Yuqiao</creatorcontrib><title>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</title><title>Environmental science. Nano</title><description>Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.</description><subject>Antibacterial agents</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Biochemical fuel cells</subject><subject>Biofilms</subject><subject>Biofouling</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Charge density</subject><subject>Chemical reduction</subject><subject>Copper oxides</subject><subject>Density</subject><subject>Electron transfer</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Kinetics</subject><subject>Maximum power density</subject><subject>Microorganisms</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jU1LxDAYhIMouKx78RcEPNfNmzRfN6X4BYt70atLmryVLrVZkxTcf29F8TTD8MwMIZfAroEJuw4cR8asYf6ELDiTUBlQcPrvpTgnq5z3jDEALoXSC_LWTHx708T1cxXiAQP1LrVxpC5TN5a-db5g6t0w58UNx1wy7WKi8ev4jiNNGCZf-pnvR_rR-xTbH7abcC7gMOQLcta5IePqT5fk9f7upXmsNtuHp-Z2Ux3AiFLpUAfTCmTgtekCKCEV8g6cMzJooWtrHLMQDFpXB2tBd8FJa3jdOvSMiyW5-t09pPg5YS67fZzSOF_uuFZKSS6YEd-DEFYE</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Chen, Huina</creator><creator>Jiang, Demin</creator><creator>Xie, Hao</creator><creator>Liu, Yuxin</creator><creator>Li, Shishi</creator><creator>Wang, Yuqiao</creator><general>Royal Society of Chemistry</general><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20230119</creationdate><title>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</title><author>Chen, Huina ; Jiang, Demin ; Xie, Hao ; Liu, Yuxin ; Li, Shishi ; Wang, Yuqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7d4d8b3e01c78fd16356e2f1aa85d737498a091d8e9a4d9917fda59824baec023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibacterial agents</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Biochemical fuel cells</topic><topic>Biofilms</topic><topic>Biofouling</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Charge density</topic><topic>Chemical reduction</topic><topic>Copper oxides</topic><topic>Density</topic><topic>Electron transfer</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Kinetics</topic><topic>Maximum power density</topic><topic>Microorganisms</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huina</creatorcontrib><creatorcontrib>Jiang, Demin</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Shishi</creatorcontrib><creatorcontrib>Wang, Yuqiao</creatorcontrib><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huina</au><au>Jiang, Demin</au><au>Xie, Hao</au><au>Liu, Yuxin</au><au>Li, Shishi</au><au>Wang, Yuqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</atitle><jtitle>Environmental science. Nano</jtitle><date>2023-01-19</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>158</spage><epage>165</epage><pages>158-165</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2en00980c</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-8153 |
ispartof | Environmental science. Nano, 2023-01, Vol.10 (1), p.158-165 |
issn | 2051-8153 2051-8161 |
language | eng |
recordid | cdi_proquest_journals_2766652308 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Antibacterial agents Antibiotics Antiinfectives and antibacterials Biochemical fuel cells Biofilms Biofouling Carbon Catalysts Cathodes Charge density Chemical reduction Copper oxides Density Electron transfer Fuel cells Fuel technology Kinetics Maximum power density Microorganisms Oxidoreductions Oxygen Oxygen reduction reactions |
title | Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu2O@Co/N-doped%20carbon%20as%20antibacterial%20catalysts%20for%20oxygen%20reduction%20in%20microbial%20fuel%20cells&rft.jtitle=Environmental%20science.%20Nano&rft.au=Chen,%20Huina&rft.date=2023-01-19&rft.volume=10&rft.issue=1&rft.spage=158&rft.epage=165&rft.pages=158-165&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/d2en00980c&rft_dat=%3Cproquest%3E2766652308%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766652308&rft_id=info:pmid/&rfr_iscdi=true |