Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells

Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science. Nano 2023-01, Vol.10 (1), p.158-165
Hauptverfasser: Chen, Huina, Jiang, Demin, Xie, Hao, Liu, Yuxin, Li, Shishi, Wang, Yuqiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 158
container_title Environmental science. Nano
container_volume 10
creator Chen, Huina
Jiang, Demin
Xie, Hao
Liu, Yuxin
Li, Shishi
Wang, Yuqiao
description Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.
doi_str_mv 10.1039/d2en00980c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2766652308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766652308</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7d4d8b3e01c78fd16356e2f1aa85d737498a091d8e9a4d9917fda59824baec023</originalsourceid><addsrcrecordid>eNo9jU1LxDAYhIMouKx78RcEPNfNmzRfN6X4BYt70atLmryVLrVZkxTcf29F8TTD8MwMIZfAroEJuw4cR8asYf6ELDiTUBlQcPrvpTgnq5z3jDEALoXSC_LWTHx708T1cxXiAQP1LrVxpC5TN5a-db5g6t0w58UNx1wy7WKi8ev4jiNNGCZf-pnvR_rR-xTbH7abcC7gMOQLcta5IePqT5fk9f7upXmsNtuHp-Z2Ux3AiFLpUAfTCmTgtekCKCEV8g6cMzJooWtrHLMQDFpXB2tBd8FJa3jdOvSMiyW5-t09pPg5YS67fZzSOF_uuFZKSS6YEd-DEFYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766652308</pqid></control><display><type>article</type><title>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Huina ; Jiang, Demin ; Xie, Hao ; Liu, Yuxin ; Li, Shishi ; Wang, Yuqiao</creator><creatorcontrib>Chen, Huina ; Jiang, Demin ; Xie, Hao ; Liu, Yuxin ; Li, Shishi ; Wang, Yuqiao</creatorcontrib><description>Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/d2en00980c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antibacterial agents ; Antibiotics ; Antiinfectives and antibacterials ; Biochemical fuel cells ; Biofilms ; Biofouling ; Carbon ; Catalysts ; Cathodes ; Charge density ; Chemical reduction ; Copper oxides ; Density ; Electron transfer ; Fuel cells ; Fuel technology ; Kinetics ; Maximum power density ; Microorganisms ; Oxidoreductions ; Oxygen ; Oxygen reduction reactions</subject><ispartof>Environmental science. Nano, 2023-01, Vol.10 (1), p.158-165</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Huina</creatorcontrib><creatorcontrib>Jiang, Demin</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Shishi</creatorcontrib><creatorcontrib>Wang, Yuqiao</creatorcontrib><title>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</title><title>Environmental science. Nano</title><description>Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.</description><subject>Antibacterial agents</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Biochemical fuel cells</subject><subject>Biofilms</subject><subject>Biofouling</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Charge density</subject><subject>Chemical reduction</subject><subject>Copper oxides</subject><subject>Density</subject><subject>Electron transfer</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Kinetics</subject><subject>Maximum power density</subject><subject>Microorganisms</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jU1LxDAYhIMouKx78RcEPNfNmzRfN6X4BYt70atLmryVLrVZkxTcf29F8TTD8MwMIZfAroEJuw4cR8asYf6ELDiTUBlQcPrvpTgnq5z3jDEALoXSC_LWTHx708T1cxXiAQP1LrVxpC5TN5a-db5g6t0w58UNx1wy7WKi8ev4jiNNGCZf-pnvR_rR-xTbH7abcC7gMOQLcta5IePqT5fk9f7upXmsNtuHp-Z2Ux3AiFLpUAfTCmTgtekCKCEV8g6cMzJooWtrHLMQDFpXB2tBd8FJa3jdOvSMiyW5-t09pPg5YS67fZzSOF_uuFZKSS6YEd-DEFYE</recordid><startdate>20230119</startdate><enddate>20230119</enddate><creator>Chen, Huina</creator><creator>Jiang, Demin</creator><creator>Xie, Hao</creator><creator>Liu, Yuxin</creator><creator>Li, Shishi</creator><creator>Wang, Yuqiao</creator><general>Royal Society of Chemistry</general><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20230119</creationdate><title>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</title><author>Chen, Huina ; Jiang, Demin ; Xie, Hao ; Liu, Yuxin ; Li, Shishi ; Wang, Yuqiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7d4d8b3e01c78fd16356e2f1aa85d737498a091d8e9a4d9917fda59824baec023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibacterial agents</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Biochemical fuel cells</topic><topic>Biofilms</topic><topic>Biofouling</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Charge density</topic><topic>Chemical reduction</topic><topic>Copper oxides</topic><topic>Density</topic><topic>Electron transfer</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Kinetics</topic><topic>Maximum power density</topic><topic>Microorganisms</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huina</creatorcontrib><creatorcontrib>Jiang, Demin</creatorcontrib><creatorcontrib>Xie, Hao</creatorcontrib><creatorcontrib>Liu, Yuxin</creatorcontrib><creatorcontrib>Li, Shishi</creatorcontrib><creatorcontrib>Wang, Yuqiao</creatorcontrib><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huina</au><au>Jiang, Demin</au><au>Xie, Hao</au><au>Liu, Yuxin</au><au>Li, Shishi</au><au>Wang, Yuqiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells</atitle><jtitle>Environmental science. Nano</jtitle><date>2023-01-19</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>158</spage><epage>165</epage><pages>158-165</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>Biofouling and sluggish kinetics on the cathode surface reduce the power generation of microbial fuel cells (MFCs). In this work, ZIF-derived Cu2O@Co/N-doped carbon (Cu2O@Co/NC) was used as an antibacterial oxygen reduction reaction (ORR) catalyst for MFCs. As an antibacterial agent on the cathode surface, Cu2O can inhibit the excessive growth of biofilms, facilitate the diffusion of OH− ions, and reduce the electron transfer resistance in ORR. The interaction between Cu2O and Co/NC was studied by charge density analysis. Charge redistribution can promote the adsorption of O2 molecules, resulting in enhanced ORR activity. The Cu2O@Co/NC cathode demonstrated superior ORR activities due to a half-wave potential of 0.80 V and an onset potential of 0.89 V versus RHE. The corresponding MFCs gained a maximum power density of 1100 mW m−2 after 450 h of operation, which was higher than that of Co/NC (739 mW m−2) and similar to that of commercial Pt/C (1067 mW m−2). Our work provides a strategy to achieve high power density of MFCs by combining the advantages of Cu2O and Co/NC catalysts.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2en00980c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2051-8153
ispartof Environmental science. Nano, 2023-01, Vol.10 (1), p.158-165
issn 2051-8153
2051-8161
language eng
recordid cdi_proquest_journals_2766652308
source Royal Society Of Chemistry Journals 2008-
subjects Antibacterial agents
Antibiotics
Antiinfectives and antibacterials
Biochemical fuel cells
Biofilms
Biofouling
Carbon
Catalysts
Cathodes
Charge density
Chemical reduction
Copper oxides
Density
Electron transfer
Fuel cells
Fuel technology
Kinetics
Maximum power density
Microorganisms
Oxidoreductions
Oxygen
Oxygen reduction reactions
title Cu2O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu2O@Co/N-doped%20carbon%20as%20antibacterial%20catalysts%20for%20oxygen%20reduction%20in%20microbial%20fuel%20cells&rft.jtitle=Environmental%20science.%20Nano&rft.au=Chen,%20Huina&rft.date=2023-01-19&rft.volume=10&rft.issue=1&rft.spage=158&rft.epage=165&rft.pages=158-165&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/d2en00980c&rft_dat=%3Cproquest%3E2766652308%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766652308&rft_id=info:pmid/&rfr_iscdi=true