3-D Displacement Detection Based on Enhanced Clustering From GNSS Positioning in a Kinematic Mode for Deformation Monitoring

For decades, displacement detection based on global navigation satellite system (GNSS) has increasingly been an important part of deformation monitoring for applications, such as dams, bridges, and high-rise buildings. Automatic identification and extraction of 3-D displacements from GNSS kinematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-10
Hauptverfasser: Shen, Nan, Wang, Bin, Gao, Guiyun, Chen, Liang, Chen, Ruizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Shen, Nan
Wang, Bin
Gao, Guiyun
Chen, Liang
Chen, Ruizhi
description For decades, displacement detection based on global navigation satellite system (GNSS) has increasingly been an important part of deformation monitoring for applications, such as dams, bridges, and high-rise buildings. Automatic identification and extraction of 3-D displacements from GNSS kinematic positioning can provide a basis for emergency response decision-making and play a crucial role in natural and secondary disasters. However, due to the limitation of single epoch positioning accuracy, automatic detection of displacement from GNSS kinematic positioning results is still a challenge. To resolve this, we propose an enhanced K -means clustering method to detect displacements from GNSS kinematic positioning, which identifies the displacement by clustering and obtains displacements from adjacent clusters. Results from simulation and field experiments have demonstrated the effectiveness of the proposed method. The accuracy of 3-D displacement extraction from GNSS real-time kinematic (RTK) positioning can reach millimeter level.
doi_str_mv 10.1109/TIM.2022.3223072
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2766618648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9954425</ieee_id><sourcerecordid>2766618648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1119a91fa84028eac3b67baab917f24f811c64a2df35d30f49c0e9fea57cb33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bXZz1H5ZbFVo70s2nWhKd1OT7UHwjzdLxcvM8Pi9N_AQuqVkRClRD5vFasQIYyPOGCcFO0MDmudFpqRk52hACC0zJXJ5ia5i3BFCCimKAfrh2QRPXDzstYEG2g5PoAPTOd_iJx1hi9MxbT91a9I93h9jB8G1H3gWfIPnr-s1fvfR9XyvuhZr_OJaaHTnDF75LWDrQwpNs9dS2iqhne9DrtGF1fsIN397iNaz6Wb8nC3f5ovx4zIzTNEuo5QqrajVpSCsBG14LYta61rRwjJhS0qNFJptLc-3nFihDAFlQeeFqTkfovtT6iH4ryPErtr5Y2jTw4oVUkpaSlEmipwoE3yMAWx1CK7R4buipOobrlLDVd9w9ddwstydLA4A_nGlciFYzn8Bx2Z3wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766618648</pqid></control><display><type>article</type><title>3-D Displacement Detection Based on Enhanced Clustering From GNSS Positioning in a Kinematic Mode for Deformation Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Nan ; Wang, Bin ; Gao, Guiyun ; Chen, Liang ; Chen, Ruizhi</creator><creatorcontrib>Shen, Nan ; Wang, Bin ; Gao, Guiyun ; Chen, Liang ; Chen, Ruizhi</creatorcontrib><description>For decades, displacement detection based on global navigation satellite system (GNSS) has increasingly been an important part of deformation monitoring for applications, such as dams, bridges, and high-rise buildings. Automatic identification and extraction of 3-D displacements from GNSS kinematic positioning can provide a basis for emergency response decision-making and play a crucial role in natural and secondary disasters. However, due to the limitation of single epoch positioning accuracy, automatic detection of displacement from GNSS kinematic positioning results is still a challenge. To resolve this, we propose an enhanced &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;K &lt;/tex-math&gt;&lt;/inline-formula&gt;-means clustering method to detect displacements from GNSS kinematic positioning, which identifies the displacement by clustering and obtains displacements from adjacent clusters. Results from simulation and field experiments have demonstrated the effectiveness of the proposed method. The accuracy of 3-D displacement extraction from GNSS real-time kinematic (RTK) positioning can reach millimeter level.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3223072</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Bridges ; Clustering ; Decision making ; Deformation ; Displacement ; Displacement detection ; Emergency response ; gap statistic ; Global navigation satellite system ; global navigation satellite system (GNSS) ; High rise buildings ; K-means clustering ; Kinematics ; local outlier factor (LOF) ; Monitoring ; real-time kinematic (RTK) positioning ; Real-time systems ; Satellites ; Strain</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1119a91fa84028eac3b67baab917f24f811c64a2df35d30f49c0e9fea57cb33</citedby><cites>FETCH-LOGICAL-c291t-1119a91fa84028eac3b67baab917f24f811c64a2df35d30f49c0e9fea57cb33</cites><orcidid>0000-0001-5609-1149 ; 0000-0001-8468-5550 ; 0000-0002-7083-6001 ; 0000-0003-2769-8907 ; 0000-0001-6683-2342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9954425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9954425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Nan</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Gao, Guiyun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Chen, Ruizhi</creatorcontrib><title>3-D Displacement Detection Based on Enhanced Clustering From GNSS Positioning in a Kinematic Mode for Deformation Monitoring</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>For decades, displacement detection based on global navigation satellite system (GNSS) has increasingly been an important part of deformation monitoring for applications, such as dams, bridges, and high-rise buildings. Automatic identification and extraction of 3-D displacements from GNSS kinematic positioning can provide a basis for emergency response decision-making and play a crucial role in natural and secondary disasters. However, due to the limitation of single epoch positioning accuracy, automatic detection of displacement from GNSS kinematic positioning results is still a challenge. To resolve this, we propose an enhanced &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;K &lt;/tex-math&gt;&lt;/inline-formula&gt;-means clustering method to detect displacements from GNSS kinematic positioning, which identifies the displacement by clustering and obtains displacements from adjacent clusters. Results from simulation and field experiments have demonstrated the effectiveness of the proposed method. The accuracy of 3-D displacement extraction from GNSS real-time kinematic (RTK) positioning can reach millimeter level.</description><subject>Accuracy</subject><subject>Bridges</subject><subject>Clustering</subject><subject>Decision making</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Displacement detection</subject><subject>Emergency response</subject><subject>gap statistic</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system (GNSS)</subject><subject>High rise buildings</subject><subject>K-means clustering</subject><subject>Kinematics</subject><subject>local outlier factor (LOF)</subject><subject>Monitoring</subject><subject>real-time kinematic (RTK) positioning</subject><subject>Real-time systems</subject><subject>Satellites</subject><subject>Strain</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bXZz1H5ZbFVo70s2nWhKd1OT7UHwjzdLxcvM8Pi9N_AQuqVkRClRD5vFasQIYyPOGCcFO0MDmudFpqRk52hACC0zJXJ5ia5i3BFCCimKAfrh2QRPXDzstYEG2g5PoAPTOd_iJx1hi9MxbT91a9I93h9jB8G1H3gWfIPnr-s1fvfR9XyvuhZr_OJaaHTnDF75LWDrQwpNs9dS2iqhne9DrtGF1fsIN397iNaz6Wb8nC3f5ovx4zIzTNEuo5QqrajVpSCsBG14LYta61rRwjJhS0qNFJptLc-3nFihDAFlQeeFqTkfovtT6iH4ryPErtr5Y2jTw4oVUkpaSlEmipwoE3yMAWx1CK7R4buipOobrlLDVd9w9ddwstydLA4A_nGlciFYzn8Bx2Z3wQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Shen, Nan</creator><creator>Wang, Bin</creator><creator>Gao, Guiyun</creator><creator>Chen, Liang</creator><creator>Chen, Ruizhi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5609-1149</orcidid><orcidid>https://orcid.org/0000-0001-8468-5550</orcidid><orcidid>https://orcid.org/0000-0002-7083-6001</orcidid><orcidid>https://orcid.org/0000-0003-2769-8907</orcidid><orcidid>https://orcid.org/0000-0001-6683-2342</orcidid></search><sort><creationdate>2023</creationdate><title>3-D Displacement Detection Based on Enhanced Clustering From GNSS Positioning in a Kinematic Mode for Deformation Monitoring</title><author>Shen, Nan ; Wang, Bin ; Gao, Guiyun ; Chen, Liang ; Chen, Ruizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1119a91fa84028eac3b67baab917f24f811c64a2df35d30f49c0e9fea57cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Bridges</topic><topic>Clustering</topic><topic>Decision making</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Displacement detection</topic><topic>Emergency response</topic><topic>gap statistic</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system (GNSS)</topic><topic>High rise buildings</topic><topic>K-means clustering</topic><topic>Kinematics</topic><topic>local outlier factor (LOF)</topic><topic>Monitoring</topic><topic>real-time kinematic (RTK) positioning</topic><topic>Real-time systems</topic><topic>Satellites</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Nan</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Gao, Guiyun</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Chen, Ruizhi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Nan</au><au>Wang, Bin</au><au>Gao, Guiyun</au><au>Chen, Liang</au><au>Chen, Ruizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Displacement Detection Based on Enhanced Clustering From GNSS Positioning in a Kinematic Mode for Deformation Monitoring</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>For decades, displacement detection based on global navigation satellite system (GNSS) has increasingly been an important part of deformation monitoring for applications, such as dams, bridges, and high-rise buildings. Automatic identification and extraction of 3-D displacements from GNSS kinematic positioning can provide a basis for emergency response decision-making and play a crucial role in natural and secondary disasters. However, due to the limitation of single epoch positioning accuracy, automatic detection of displacement from GNSS kinematic positioning results is still a challenge. To resolve this, we propose an enhanced &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;K &lt;/tex-math&gt;&lt;/inline-formula&gt;-means clustering method to detect displacements from GNSS kinematic positioning, which identifies the displacement by clustering and obtains displacements from adjacent clusters. Results from simulation and field experiments have demonstrated the effectiveness of the proposed method. The accuracy of 3-D displacement extraction from GNSS real-time kinematic (RTK) positioning can reach millimeter level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3223072</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5609-1149</orcidid><orcidid>https://orcid.org/0000-0001-8468-5550</orcidid><orcidid>https://orcid.org/0000-0002-7083-6001</orcidid><orcidid>https://orcid.org/0000-0003-2769-8907</orcidid><orcidid>https://orcid.org/0000-0001-6683-2342</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2766618648
source IEEE Electronic Library (IEL)
subjects Accuracy
Bridges
Clustering
Decision making
Deformation
Displacement
Displacement detection
Emergency response
gap statistic
Global navigation satellite system
global navigation satellite system (GNSS)
High rise buildings
K-means clustering
Kinematics
local outlier factor (LOF)
Monitoring
real-time kinematic (RTK) positioning
Real-time systems
Satellites
Strain
title 3-D Displacement Detection Based on Enhanced Clustering From GNSS Positioning in a Kinematic Mode for Deformation Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Displacement%20Detection%20Based%20on%20Enhanced%20Clustering%20From%20GNSS%20Positioning%20in%20a%20Kinematic%20Mode%20for%20Deformation%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Shen,%20Nan&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3223072&rft_dat=%3Cproquest_RIE%3E2766618648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766618648&rft_id=info:pmid/&rft_ieee_id=9954425&rfr_iscdi=true