A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction
Diminishing the usage of Pt without sacrificing its activity still remains a challenge in proton-exchange membrane fuel cells (PEMFCs). Here, we report a gas-promoted dealloying process to prepare a closely packed hybrid electrocatalyst containing Pt-based alloy nanocrystals (NCs) and dense isolated...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2023-01, Vol.16 (1), p.148-156 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 156 |
---|---|
container_issue | 1 |
container_start_page | 148 |
container_title | Energy & environmental science |
container_volume | 16 |
creator | Guo, Wenxin Gao, Xiaoping Zhu, Mengzhao Xu, Chenxi Zhu, Xiaorong Zhao, Xuyan Sun, Rongbo Xue, Zhenggang Song, Jia Lin, Tian Xu, Jie Chen, Wenxing Lin, Yue Li, Yafei Huang, Zhou Wu, Yuen |
description | Diminishing the usage of Pt without sacrificing its activity still remains a challenge in proton-exchange membrane fuel cells (PEMFCs). Here, we report a gas-promoted dealloying process to prepare a closely packed hybrid electrocatalyst containing Pt-based alloy nanocrystals (NCs) and dense isolated Ni sites. Driven by ammonia and heat, the initial Pt1.5Ni NC undergoes a dealloying process to form a stable Pt-skin Pt1.5Ni1−x alloy due to the continuous detachment of Ni atoms from it. Subsequently, these Ni atoms would be trapped by the adjacent defects on the carbon substrates, resulting in abundant Ni sites distributed closely around the dealloyed Pt1.5Ni1−x NC. For a multielectron transferred oxygen reduction reaction (ORR), the hybrid ensures the reduction of the two electrons at Ni single sites, and the corresponding intermediate (OOH*) rapidly migrates to the neighboring Pt-based NC to finish the subsequent electron transfer. This efficient relay catalytic process could greatly reduce the usage of Pt. The resulting catalyst exhibits excellent ORR activity with a mass activity (MA) of 4.10 A mgPt−1, exceeding that of commercial Pt/C by a factor of ∼15. More importantly, in practical H2/O2 fuel cell tests, a peak power density of 1.72 W cm−2 and a current density of 0.55 A cm−2 at 0.80 V can be achieved, both of which exceed DOE 2025 targets. |
doi_str_mv | 10.1039/d2ee02381d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2766418202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766418202</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5a8150a10fff46169ae073eb1b72c92937084b85dd13f365da88c4feb5b6b4ca3</originalsourceid><addsrcrecordid>eNo1kEtLw0AcxBdRsFYvfoIFz2n3v5t95FiCLyjRg96Esk9NDdmaTbG5efSs37CfxIB6GGbgBzMwCJ0DmQFhxdxR7wllCtwBmoDkecYlEYf_WRT0GJ2ktCZEUCKLCXpaYNvE5JsBb7R99Q7f9zDjVQ37z6_dvKr3H9_VqBK_DKarHQ6xw51v9ICt7nUzpDrhPr7rziUcd8Ozb0fstravY3uKjoJukj_78yl6vLp8KG-y5d31bblYZhtQrM-4VsCJBhJCyAWIQnsimTdgJLUFLZgkKjeKOwcsMMGdVsrmwRtuhMmtZlN08du76eLb1qd-tY7brh0nV1QKkYOi4yk_ut1W-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766418202</pqid></control><display><type>article</type><title>A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Guo, Wenxin ; Gao, Xiaoping ; Zhu, Mengzhao ; Xu, Chenxi ; Zhu, Xiaorong ; Zhao, Xuyan ; Sun, Rongbo ; Xue, Zhenggang ; Song, Jia ; Lin, Tian ; Xu, Jie ; Chen, Wenxing ; Lin, Yue ; Li, Yafei ; Huang, Zhou ; Wu, Yuen</creator><creatorcontrib>Guo, Wenxin ; Gao, Xiaoping ; Zhu, Mengzhao ; Xu, Chenxi ; Zhu, Xiaorong ; Zhao, Xuyan ; Sun, Rongbo ; Xue, Zhenggang ; Song, Jia ; Lin, Tian ; Xu, Jie ; Chen, Wenxing ; Lin, Yue ; Li, Yafei ; Huang, Zhou ; Wu, Yuen</creatorcontrib><description>Diminishing the usage of Pt without sacrificing its activity still remains a challenge in proton-exchange membrane fuel cells (PEMFCs). Here, we report a gas-promoted dealloying process to prepare a closely packed hybrid electrocatalyst containing Pt-based alloy nanocrystals (NCs) and dense isolated Ni sites. Driven by ammonia and heat, the initial Pt1.5Ni NC undergoes a dealloying process to form a stable Pt-skin Pt1.5Ni1−x alloy due to the continuous detachment of Ni atoms from it. Subsequently, these Ni atoms would be trapped by the adjacent defects on the carbon substrates, resulting in abundant Ni sites distributed closely around the dealloyed Pt1.5Ni1−x NC. For a multielectron transferred oxygen reduction reaction (ORR), the hybrid ensures the reduction of the two electrons at Ni single sites, and the corresponding intermediate (OOH*) rapidly migrates to the neighboring Pt-based NC to finish the subsequent electron transfer. This efficient relay catalytic process could greatly reduce the usage of Pt. The resulting catalyst exhibits excellent ORR activity with a mass activity (MA) of 4.10 A mgPt−1, exceeding that of commercial Pt/C by a factor of ∼15. More importantly, in practical H2/O2 fuel cell tests, a peak power density of 1.72 W cm−2 and a current density of 0.55 A cm−2 at 0.80 V can be achieved, both of which exceed DOE 2025 targets.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee02381d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonia ; Carbon sources ; Catalysis ; Catalysts ; Chemical reduction ; Dealloying ; Electrocatalysts ; Electron transfer ; Electrons ; Fuel cells ; Fuel technology ; Nanoalloys ; Nanocrystals ; Oxygen ; Oxygen reduction reactions ; Platinum base alloys ; Proton exchange membrane fuel cells ; Relay ; Substrates</subject><ispartof>Energy & environmental science, 2023-01, Vol.16 (1), p.148-156</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Guo, Wenxin</creatorcontrib><creatorcontrib>Gao, Xiaoping</creatorcontrib><creatorcontrib>Zhu, Mengzhao</creatorcontrib><creatorcontrib>Xu, Chenxi</creatorcontrib><creatorcontrib>Zhu, Xiaorong</creatorcontrib><creatorcontrib>Zhao, Xuyan</creatorcontrib><creatorcontrib>Sun, Rongbo</creatorcontrib><creatorcontrib>Xue, Zhenggang</creatorcontrib><creatorcontrib>Song, Jia</creatorcontrib><creatorcontrib>Lin, Tian</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>Huang, Zhou</creatorcontrib><creatorcontrib>Wu, Yuen</creatorcontrib><title>A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction</title><title>Energy & environmental science</title><description>Diminishing the usage of Pt without sacrificing its activity still remains a challenge in proton-exchange membrane fuel cells (PEMFCs). Here, we report a gas-promoted dealloying process to prepare a closely packed hybrid electrocatalyst containing Pt-based alloy nanocrystals (NCs) and dense isolated Ni sites. Driven by ammonia and heat, the initial Pt1.5Ni NC undergoes a dealloying process to form a stable Pt-skin Pt1.5Ni1−x alloy due to the continuous detachment of Ni atoms from it. Subsequently, these Ni atoms would be trapped by the adjacent defects on the carbon substrates, resulting in abundant Ni sites distributed closely around the dealloyed Pt1.5Ni1−x NC. For a multielectron transferred oxygen reduction reaction (ORR), the hybrid ensures the reduction of the two electrons at Ni single sites, and the corresponding intermediate (OOH*) rapidly migrates to the neighboring Pt-based NC to finish the subsequent electron transfer. This efficient relay catalytic process could greatly reduce the usage of Pt. The resulting catalyst exhibits excellent ORR activity with a mass activity (MA) of 4.10 A mgPt−1, exceeding that of commercial Pt/C by a factor of ∼15. More importantly, in practical H2/O2 fuel cell tests, a peak power density of 1.72 W cm−2 and a current density of 0.55 A cm−2 at 0.80 V can be achieved, both of which exceed DOE 2025 targets.</description><subject>Ammonia</subject><subject>Carbon sources</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Dealloying</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Nanoalloys</subject><subject>Nanocrystals</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Platinum base alloys</subject><subject>Proton exchange membrane fuel cells</subject><subject>Relay</subject><subject>Substrates</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AcxBdRsFYvfoIFz2n3v5t95FiCLyjRg96Esk9NDdmaTbG5efSs37CfxIB6GGbgBzMwCJ0DmQFhxdxR7wllCtwBmoDkecYlEYf_WRT0GJ2ktCZEUCKLCXpaYNvE5JsBb7R99Q7f9zDjVQ37z6_dvKr3H9_VqBK_DKarHQ6xw51v9ICt7nUzpDrhPr7rziUcd8Ozb0fstravY3uKjoJukj_78yl6vLp8KG-y5d31bblYZhtQrM-4VsCJBhJCyAWIQnsimTdgJLUFLZgkKjeKOwcsMMGdVsrmwRtuhMmtZlN08du76eLb1qd-tY7brh0nV1QKkYOi4yk_ut1W-A</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Guo, Wenxin</creator><creator>Gao, Xiaoping</creator><creator>Zhu, Mengzhao</creator><creator>Xu, Chenxi</creator><creator>Zhu, Xiaorong</creator><creator>Zhao, Xuyan</creator><creator>Sun, Rongbo</creator><creator>Xue, Zhenggang</creator><creator>Song, Jia</creator><creator>Lin, Tian</creator><creator>Xu, Jie</creator><creator>Chen, Wenxing</creator><creator>Lin, Yue</creator><creator>Li, Yafei</creator><creator>Huang, Zhou</creator><creator>Wu, Yuen</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230118</creationdate><title>A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction</title><author>Guo, Wenxin ; Gao, Xiaoping ; Zhu, Mengzhao ; Xu, Chenxi ; Zhu, Xiaorong ; Zhao, Xuyan ; Sun, Rongbo ; Xue, Zhenggang ; Song, Jia ; Lin, Tian ; Xu, Jie ; Chen, Wenxing ; Lin, Yue ; Li, Yafei ; Huang, Zhou ; Wu, Yuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5a8150a10fff46169ae073eb1b72c92937084b85dd13f365da88c4feb5b6b4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Carbon sources</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Dealloying</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Nanoalloys</topic><topic>Nanocrystals</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Platinum base alloys</topic><topic>Proton exchange membrane fuel cells</topic><topic>Relay</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wenxin</creatorcontrib><creatorcontrib>Gao, Xiaoping</creatorcontrib><creatorcontrib>Zhu, Mengzhao</creatorcontrib><creatorcontrib>Xu, Chenxi</creatorcontrib><creatorcontrib>Zhu, Xiaorong</creatorcontrib><creatorcontrib>Zhao, Xuyan</creatorcontrib><creatorcontrib>Sun, Rongbo</creatorcontrib><creatorcontrib>Xue, Zhenggang</creatorcontrib><creatorcontrib>Song, Jia</creatorcontrib><creatorcontrib>Lin, Tian</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Chen, Wenxing</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Li, Yafei</creatorcontrib><creatorcontrib>Huang, Zhou</creatorcontrib><creatorcontrib>Wu, Yuen</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wenxin</au><au>Gao, Xiaoping</au><au>Zhu, Mengzhao</au><au>Xu, Chenxi</au><au>Zhu, Xiaorong</au><au>Zhao, Xuyan</au><au>Sun, Rongbo</au><au>Xue, Zhenggang</au><au>Song, Jia</au><au>Lin, Tian</au><au>Xu, Jie</au><au>Chen, Wenxing</au><au>Lin, Yue</au><au>Li, Yafei</au><au>Huang, Zhou</au><au>Wu, Yuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction</atitle><jtitle>Energy & environmental science</jtitle><date>2023-01-18</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>148</spage><epage>156</epage><pages>148-156</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Diminishing the usage of Pt without sacrificing its activity still remains a challenge in proton-exchange membrane fuel cells (PEMFCs). Here, we report a gas-promoted dealloying process to prepare a closely packed hybrid electrocatalyst containing Pt-based alloy nanocrystals (NCs) and dense isolated Ni sites. Driven by ammonia and heat, the initial Pt1.5Ni NC undergoes a dealloying process to form a stable Pt-skin Pt1.5Ni1−x alloy due to the continuous detachment of Ni atoms from it. Subsequently, these Ni atoms would be trapped by the adjacent defects on the carbon substrates, resulting in abundant Ni sites distributed closely around the dealloyed Pt1.5Ni1−x NC. For a multielectron transferred oxygen reduction reaction (ORR), the hybrid ensures the reduction of the two electrons at Ni single sites, and the corresponding intermediate (OOH*) rapidly migrates to the neighboring Pt-based NC to finish the subsequent electron transfer. This efficient relay catalytic process could greatly reduce the usage of Pt. The resulting catalyst exhibits excellent ORR activity with a mass activity (MA) of 4.10 A mgPt−1, exceeding that of commercial Pt/C by a factor of ∼15. More importantly, in practical H2/O2 fuel cell tests, a peak power density of 1.72 W cm−2 and a current density of 0.55 A cm−2 at 0.80 V can be achieved, both of which exceed DOE 2025 targets.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee02381d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2023-01, Vol.16 (1), p.148-156 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2766418202 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Ammonia Carbon sources Catalysis Catalysts Chemical reduction Dealloying Electrocatalysts Electron transfer Electrons Fuel cells Fuel technology Nanoalloys Nanocrystals Oxygen Oxygen reduction reactions Platinum base alloys Proton exchange membrane fuel cells Relay Substrates |
title | A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20closely%20packed%20Pt1.5Ni1%E2%88%92x/Ni%E2%80%93N%E2%80%93C%20hybrid%20for%20relay%20catalysis%20towards%20oxygen%20reduction&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Guo,%20Wenxin&rft.date=2023-01-18&rft.volume=16&rft.issue=1&rft.spage=148&rft.epage=156&rft.pages=148-156&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee02381d&rft_dat=%3Cproquest%3E2766418202%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766418202&rft_id=info:pmid/&rfr_iscdi=true |