Chiroptical 3D Actuators for Smart Sensors

Examples of anisotropic movement paired with helical geometry abound in the animal and plant kingdoms are used for a variety of reasons, such as diverse social signaling directed at conspecifics or camouflage to avoid predation. Inspired by these natural phenomena, a smart sensor is developed with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-01, Vol.33 (3), p.n/a
Hauptverfasser: Han, Seung Hui, Lim, Seok‐In, Ryu, Ki‐Hyun, Koo, Jahyeon, Kang, Dong‐Gue, Jeong, Kwang‐Un, Jeon, Seung‐Yeol, Kim, Dae‐Yoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced functional materials
container_volume 33
creator Han, Seung Hui
Lim, Seok‐In
Ryu, Ki‐Hyun
Koo, Jahyeon
Kang, Dong‐Gue
Jeong, Kwang‐Un
Jeon, Seung‐Yeol
Kim, Dae‐Yoon
description Examples of anisotropic movement paired with helical geometry abound in the animal and plant kingdoms are used for a variety of reasons, such as diverse social signaling directed at conspecifics or camouflage to avoid predation. Inspired by these natural phenomena, a smart sensor is developed with a chiroptical 3D actuator that can fold, bend, and twist in response to external stimuli, reflecting light of specific wavelengths, and possessing circular polarization properties. Chirophotonic crystal actuators are constructed with an asymmetric Janus structure and are fabricated by self‐assembly, screen printing, and in situ photopolymerization. The optically active layer consists of cholesteric liquid crystal polymer, and the mechanically active layer is composed of a polymeric gel thin film. The programmed in‐planar and out‐of‐planar asymmetric Janus structures control the directionality of various shapes morphing from 2D to 3D. Finite element simulations allow to predict the shape changes associated with these chirophotonic crystal actuators: flower blooming, tendril climbing, eagle hunting, ant lifting, and inchworm moving motions. By utilizing the chirophotonic crystal actuator, a reusable and portable methanol‐laced water identifier is developed. The programmed in‐planar and out‐of‐planar heterogeneous assembly of chiroptically and mechanically active layers show the ability to reversible shape morphing and structural color signaling that is applied to the methanol‐laced water identifier.
doi_str_mv 10.1002/adfm.202210680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766316500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766316500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2470-6ec593b53312876b842d25b92e3cc7c51074c7c0db9ac7fad40de192f9bb74cf3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwVvQutL0ibNsXROhYmHKXgLaZpgR7fWpEX23y-jMo-evsd73--9x4fQLYYEA5AHVdttQoAQDCyHMzTDDLOYAsnPTzX-vERX3m8AMOc0naH78qtxXT80WrURXUSFHkY1dM5HtnPReqvcEK3NzofONbqwqvXm5lfn6GP5-F4-x6u3p5eyWMWapBxiZnQmaJVRiknOWZWnpCZZJYihWnOdYeBpUKgroTS3qk6hNlgQK6oqTCydo7tpb--679H4QW660e3CSUk4YxSzDCC4ksmlXee9M1b2rgnv7iUGecxDHvOQpzwCICbgp2nN_h-3LBbL1z_2AAJUYnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766316500</pqid></control><display><type>article</type><title>Chiroptical 3D Actuators for Smart Sensors</title><source>Access via Wiley Online Library</source><creator>Han, Seung Hui ; Lim, Seok‐In ; Ryu, Ki‐Hyun ; Koo, Jahyeon ; Kang, Dong‐Gue ; Jeong, Kwang‐Un ; Jeon, Seung‐Yeol ; Kim, Dae‐Yoon</creator><creatorcontrib>Han, Seung Hui ; Lim, Seok‐In ; Ryu, Ki‐Hyun ; Koo, Jahyeon ; Kang, Dong‐Gue ; Jeong, Kwang‐Un ; Jeon, Seung‐Yeol ; Kim, Dae‐Yoon</creatorcontrib><description>Examples of anisotropic movement paired with helical geometry abound in the animal and plant kingdoms are used for a variety of reasons, such as diverse social signaling directed at conspecifics or camouflage to avoid predation. Inspired by these natural phenomena, a smart sensor is developed with a chiroptical 3D actuator that can fold, bend, and twist in response to external stimuli, reflecting light of specific wavelengths, and possessing circular polarization properties. Chirophotonic crystal actuators are constructed with an asymmetric Janus structure and are fabricated by self‐assembly, screen printing, and in situ photopolymerization. The optically active layer consists of cholesteric liquid crystal polymer, and the mechanically active layer is composed of a polymeric gel thin film. The programmed in‐planar and out‐of‐planar asymmetric Janus structures control the directionality of various shapes morphing from 2D to 3D. Finite element simulations allow to predict the shape changes associated with these chirophotonic crystal actuators: flower blooming, tendril climbing, eagle hunting, ant lifting, and inchworm moving motions. By utilizing the chirophotonic crystal actuator, a reusable and portable methanol‐laced water identifier is developed. The programmed in‐planar and out‐of‐planar heterogeneous assembly of chiroptically and mechanically active layers show the ability to reversible shape morphing and structural color signaling that is applied to the methanol‐laced water identifier.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202210680</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Actuators ; Asymmetry ; Cholesteric liquid crystals ; Circular polarization ; helical nanostructures ; heterogeneous assembly ; Liquid crystal polymers ; Materials science ; Morphing ; Optical activity ; Photopolymerization ; Polymer films ; Screen printing ; selective reflection ; Smart sensors ; soft actuators ; Thin films</subject><ispartof>Advanced functional materials, 2023-01, Vol.33 (3), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2470-6ec593b53312876b842d25b92e3cc7c51074c7c0db9ac7fad40de192f9bb74cf3</citedby><cites>FETCH-LOGICAL-c2470-6ec593b53312876b842d25b92e3cc7c51074c7c0db9ac7fad40de192f9bb74cf3</cites><orcidid>0000-0001-5455-7224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202210680$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202210680$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Han, Seung Hui</creatorcontrib><creatorcontrib>Lim, Seok‐In</creatorcontrib><creatorcontrib>Ryu, Ki‐Hyun</creatorcontrib><creatorcontrib>Koo, Jahyeon</creatorcontrib><creatorcontrib>Kang, Dong‐Gue</creatorcontrib><creatorcontrib>Jeong, Kwang‐Un</creatorcontrib><creatorcontrib>Jeon, Seung‐Yeol</creatorcontrib><creatorcontrib>Kim, Dae‐Yoon</creatorcontrib><title>Chiroptical 3D Actuators for Smart Sensors</title><title>Advanced functional materials</title><description>Examples of anisotropic movement paired with helical geometry abound in the animal and plant kingdoms are used for a variety of reasons, such as diverse social signaling directed at conspecifics or camouflage to avoid predation. Inspired by these natural phenomena, a smart sensor is developed with a chiroptical 3D actuator that can fold, bend, and twist in response to external stimuli, reflecting light of specific wavelengths, and possessing circular polarization properties. Chirophotonic crystal actuators are constructed with an asymmetric Janus structure and are fabricated by self‐assembly, screen printing, and in situ photopolymerization. The optically active layer consists of cholesteric liquid crystal polymer, and the mechanically active layer is composed of a polymeric gel thin film. The programmed in‐planar and out‐of‐planar asymmetric Janus structures control the directionality of various shapes morphing from 2D to 3D. Finite element simulations allow to predict the shape changes associated with these chirophotonic crystal actuators: flower blooming, tendril climbing, eagle hunting, ant lifting, and inchworm moving motions. By utilizing the chirophotonic crystal actuator, a reusable and portable methanol‐laced water identifier is developed. The programmed in‐planar and out‐of‐planar heterogeneous assembly of chiroptically and mechanically active layers show the ability to reversible shape morphing and structural color signaling that is applied to the methanol‐laced water identifier.</description><subject>Actuators</subject><subject>Asymmetry</subject><subject>Cholesteric liquid crystals</subject><subject>Circular polarization</subject><subject>helical nanostructures</subject><subject>heterogeneous assembly</subject><subject>Liquid crystal polymers</subject><subject>Materials science</subject><subject>Morphing</subject><subject>Optical activity</subject><subject>Photopolymerization</subject><subject>Polymer films</subject><subject>Screen printing</subject><subject>selective reflection</subject><subject>Smart sensors</subject><subject>soft actuators</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdXzwVvQutL0ibNsXROhYmHKXgLaZpgR7fWpEX23y-jMo-evsd73--9x4fQLYYEA5AHVdttQoAQDCyHMzTDDLOYAsnPTzX-vERX3m8AMOc0naH78qtxXT80WrURXUSFHkY1dM5HtnPReqvcEK3NzofONbqwqvXm5lfn6GP5-F4-x6u3p5eyWMWapBxiZnQmaJVRiknOWZWnpCZZJYihWnOdYeBpUKgroTS3qk6hNlgQK6oqTCydo7tpb--679H4QW660e3CSUk4YxSzDCC4ksmlXee9M1b2rgnv7iUGecxDHvOQpzwCICbgp2nN_h-3LBbL1z_2AAJUYnc</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Han, Seung Hui</creator><creator>Lim, Seok‐In</creator><creator>Ryu, Ki‐Hyun</creator><creator>Koo, Jahyeon</creator><creator>Kang, Dong‐Gue</creator><creator>Jeong, Kwang‐Un</creator><creator>Jeon, Seung‐Yeol</creator><creator>Kim, Dae‐Yoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5455-7224</orcidid></search><sort><creationdate>20230101</creationdate><title>Chiroptical 3D Actuators for Smart Sensors</title><author>Han, Seung Hui ; Lim, Seok‐In ; Ryu, Ki‐Hyun ; Koo, Jahyeon ; Kang, Dong‐Gue ; Jeong, Kwang‐Un ; Jeon, Seung‐Yeol ; Kim, Dae‐Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2470-6ec593b53312876b842d25b92e3cc7c51074c7c0db9ac7fad40de192f9bb74cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Asymmetry</topic><topic>Cholesteric liquid crystals</topic><topic>Circular polarization</topic><topic>helical nanostructures</topic><topic>heterogeneous assembly</topic><topic>Liquid crystal polymers</topic><topic>Materials science</topic><topic>Morphing</topic><topic>Optical activity</topic><topic>Photopolymerization</topic><topic>Polymer films</topic><topic>Screen printing</topic><topic>selective reflection</topic><topic>Smart sensors</topic><topic>soft actuators</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Seung Hui</creatorcontrib><creatorcontrib>Lim, Seok‐In</creatorcontrib><creatorcontrib>Ryu, Ki‐Hyun</creatorcontrib><creatorcontrib>Koo, Jahyeon</creatorcontrib><creatorcontrib>Kang, Dong‐Gue</creatorcontrib><creatorcontrib>Jeong, Kwang‐Un</creatorcontrib><creatorcontrib>Jeon, Seung‐Yeol</creatorcontrib><creatorcontrib>Kim, Dae‐Yoon</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Seung Hui</au><au>Lim, Seok‐In</au><au>Ryu, Ki‐Hyun</au><au>Koo, Jahyeon</au><au>Kang, Dong‐Gue</au><au>Jeong, Kwang‐Un</au><au>Jeon, Seung‐Yeol</au><au>Kim, Dae‐Yoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiroptical 3D Actuators for Smart Sensors</atitle><jtitle>Advanced functional materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>3</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Examples of anisotropic movement paired with helical geometry abound in the animal and plant kingdoms are used for a variety of reasons, such as diverse social signaling directed at conspecifics or camouflage to avoid predation. Inspired by these natural phenomena, a smart sensor is developed with a chiroptical 3D actuator that can fold, bend, and twist in response to external stimuli, reflecting light of specific wavelengths, and possessing circular polarization properties. Chirophotonic crystal actuators are constructed with an asymmetric Janus structure and are fabricated by self‐assembly, screen printing, and in situ photopolymerization. The optically active layer consists of cholesteric liquid crystal polymer, and the mechanically active layer is composed of a polymeric gel thin film. The programmed in‐planar and out‐of‐planar asymmetric Janus structures control the directionality of various shapes morphing from 2D to 3D. Finite element simulations allow to predict the shape changes associated with these chirophotonic crystal actuators: flower blooming, tendril climbing, eagle hunting, ant lifting, and inchworm moving motions. By utilizing the chirophotonic crystal actuator, a reusable and portable methanol‐laced water identifier is developed. The programmed in‐planar and out‐of‐planar heterogeneous assembly of chiroptically and mechanically active layers show the ability to reversible shape morphing and structural color signaling that is applied to the methanol‐laced water identifier.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202210680</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5455-7224</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-01, Vol.33 (3), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2766316500
source Access via Wiley Online Library
subjects Actuators
Asymmetry
Cholesteric liquid crystals
Circular polarization
helical nanostructures
heterogeneous assembly
Liquid crystal polymers
Materials science
Morphing
Optical activity
Photopolymerization
Polymer films
Screen printing
selective reflection
Smart sensors
soft actuators
Thin films
title Chiroptical 3D Actuators for Smart Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiroptical%203D%20Actuators%20for%20Smart%20Sensors&rft.jtitle=Advanced%20functional%20materials&rft.au=Han,%20Seung%20Hui&rft.date=2023-01-01&rft.volume=33&rft.issue=3&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202210680&rft_dat=%3Cproquest_cross%3E2766316500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766316500&rft_id=info:pmid/&rfr_iscdi=true