Quantum microscopy with van der Waals heterostructures

Solid-state spin sensors have the capacity to act as quantum microscopes for probing material properties and physical processes. However, so far, these tools have relied on quantum defects hosted in rigid, three-dimensional (3D) crystals such as diamond, limiting their ability to closely interface w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2023-01, Vol.19 (1), p.87-91
Hauptverfasser: Healey, A. J., Scholten, S. C., Yang, T., Scott, J. A., Abrahams, G. J., Robertson, I. O., Hou, X. F., Guo, Y. F., Rahman, S., Lu, Y., Kianinia, M., Aharonovich, I., Tetienne, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 87
container_title Nature physics
container_volume 19
creator Healey, A. J.
Scholten, S. C.
Yang, T.
Scott, J. A.
Abrahams, G. J.
Robertson, I. O.
Hou, X. F.
Guo, Y. F.
Rahman, S.
Lu, Y.
Kianinia, M.
Aharonovich, I.
Tetienne, J.-P.
description Solid-state spin sensors have the capacity to act as quantum microscopes for probing material properties and physical processes. However, so far, these tools have relied on quantum defects hosted in rigid, three-dimensional (3D) crystals such as diamond, limiting their ability to closely interface with the sample. Here we demonstrate a versatile quantum microscope using point defects embedded within a thin layer of the van der Waals material hexagonal boron nitride. To showcase the multi-modal capabilities of this platform, we assemble two different heterostructures of a van der Waals material in combination with a quantum-active boron nitride flake. We demonstrate time-resolved, simultaneous temperature and magnetic imaging near the Curie temperature of a van der Waals ferromagnet, as well as map out charge currents and Joule heating in an operating graphene device. The straightforward integration of the hexagonal boron nitride quantum sensor with other van der Waals materials will yield substantial practical benefits for the design and measurement of 2D devices. Hexagonal boron nitride is a common component of 2D heterostructures. Defects implanted in boron nitride crystals can be used to perform spatially resolved sensing of properties, including temperature, magnetism and current.
doi_str_mv 10.1038/s41567-022-01815-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766282710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766282710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-234d80df13e368bc036ff628dfc4c8ce666a0a7b7ec092dad0ac2daa580a9d9e3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgWv0Dngqeoy9Jm6RHWdQVFkRQPIZskrpdbLvmQ9l_b9aK3jzN472ZecwgdE7gkgCTV6EiNRcYKMVAJKlxfYBmRFQ1ppUkh7-zYMfoJIQNQEU5YTPEH5MeYurLvjN-DGbc7srPLq7LDz2U1vnyReu3UK5ddPkcfTIxeRdO0VGb9-7sBwv0fHvzNF_g5cPd_fx6iQ0jTcSUVVaCbQlzjMuVAcbbllNpW1MZaRznXIMWK-EMNNRqC9pk0LUE3djGsQJdTL5bP74nF6LajMkP-aWigmcnKnL-AtGJtY8QvGvV1ne99jtFQO37UVM_KvejvvtRdRaxSRQyeXh1_s_6H9UXQD1pDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766282710</pqid></control><display><type>article</type><title>Quantum microscopy with van der Waals heterostructures</title><source>Nature</source><source>SpringerNature Journals</source><creator>Healey, A. J. ; Scholten, S. C. ; Yang, T. ; Scott, J. A. ; Abrahams, G. J. ; Robertson, I. O. ; Hou, X. F. ; Guo, Y. F. ; Rahman, S. ; Lu, Y. ; Kianinia, M. ; Aharonovich, I. ; Tetienne, J.-P.</creator><creatorcontrib>Healey, A. J. ; Scholten, S. C. ; Yang, T. ; Scott, J. A. ; Abrahams, G. J. ; Robertson, I. O. ; Hou, X. F. ; Guo, Y. F. ; Rahman, S. ; Lu, Y. ; Kianinia, M. ; Aharonovich, I. ; Tetienne, J.-P.</creatorcontrib><description>Solid-state spin sensors have the capacity to act as quantum microscopes for probing material properties and physical processes. However, so far, these tools have relied on quantum defects hosted in rigid, three-dimensional (3D) crystals such as diamond, limiting their ability to closely interface with the sample. Here we demonstrate a versatile quantum microscope using point defects embedded within a thin layer of the van der Waals material hexagonal boron nitride. To showcase the multi-modal capabilities of this platform, we assemble two different heterostructures of a van der Waals material in combination with a quantum-active boron nitride flake. We demonstrate time-resolved, simultaneous temperature and magnetic imaging near the Curie temperature of a van der Waals ferromagnet, as well as map out charge currents and Joule heating in an operating graphene device. The straightforward integration of the hexagonal boron nitride quantum sensor with other van der Waals materials will yield substantial practical benefits for the design and measurement of 2D devices. Hexagonal boron nitride is a common component of 2D heterostructures. Defects implanted in boron nitride crystals can be used to perform spatially resolved sensing of properties, including temperature, magnetism and current.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01815-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/1018 ; 639/624/1107/510 ; 639/766/119/997 ; 639/766/483/1255 ; 639/925/930/2735 ; Atomic ; Boron ; Boron nitride ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Crystal defects ; Crystals ; Curie temperature ; Diamonds ; Ferromagnetism ; Flakes (defects) ; Graphene ; Heterostructures ; Magnetic properties ; Magnetism ; Material properties ; Mathematical and Computational Physics ; Microscopes ; Molecular ; Ohmic dissipation ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Point defects ; Quantum sensors ; Resistance heating ; Silicones ; Theoretical</subject><ispartof>Nature physics, 2023-01, Vol.19 (1), p.87-91</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-234d80df13e368bc036ff628dfc4c8ce666a0a7b7ec092dad0ac2daa580a9d9e3</citedby><cites>FETCH-LOGICAL-c319t-234d80df13e368bc036ff628dfc4c8ce666a0a7b7ec092dad0ac2daa580a9d9e3</cites><orcidid>0000-0001-8494-9341 ; 0000-0001-6131-3906 ; 0000-0002-9386-4857 ; 0000-0001-5727-0288 ; 0000-0003-4304-3935 ; 0000-0001-5796-2508 ; 0000-0001-6477-517X ; 0000-0002-2195-0406 ; 0000-0003-4073-1492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01815-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01815-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Healey, A. J.</creatorcontrib><creatorcontrib>Scholten, S. C.</creatorcontrib><creatorcontrib>Yang, T.</creatorcontrib><creatorcontrib>Scott, J. A.</creatorcontrib><creatorcontrib>Abrahams, G. J.</creatorcontrib><creatorcontrib>Robertson, I. O.</creatorcontrib><creatorcontrib>Hou, X. F.</creatorcontrib><creatorcontrib>Guo, Y. F.</creatorcontrib><creatorcontrib>Rahman, S.</creatorcontrib><creatorcontrib>Lu, Y.</creatorcontrib><creatorcontrib>Kianinia, M.</creatorcontrib><creatorcontrib>Aharonovich, I.</creatorcontrib><creatorcontrib>Tetienne, J.-P.</creatorcontrib><title>Quantum microscopy with van der Waals heterostructures</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Solid-state spin sensors have the capacity to act as quantum microscopes for probing material properties and physical processes. However, so far, these tools have relied on quantum defects hosted in rigid, three-dimensional (3D) crystals such as diamond, limiting their ability to closely interface with the sample. Here we demonstrate a versatile quantum microscope using point defects embedded within a thin layer of the van der Waals material hexagonal boron nitride. To showcase the multi-modal capabilities of this platform, we assemble two different heterostructures of a van der Waals material in combination with a quantum-active boron nitride flake. We demonstrate time-resolved, simultaneous temperature and magnetic imaging near the Curie temperature of a van der Waals ferromagnet, as well as map out charge currents and Joule heating in an operating graphene device. The straightforward integration of the hexagonal boron nitride quantum sensor with other van der Waals materials will yield substantial practical benefits for the design and measurement of 2D devices. Hexagonal boron nitride is a common component of 2D heterostructures. Defects implanted in boron nitride crystals can be used to perform spatially resolved sensing of properties, including temperature, magnetism and current.</description><subject>639/301/357/1018</subject><subject>639/624/1107/510</subject><subject>639/766/119/997</subject><subject>639/766/483/1255</subject><subject>639/925/930/2735</subject><subject>Atomic</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Curie temperature</subject><subject>Diamonds</subject><subject>Ferromagnetism</subject><subject>Flakes (defects)</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Material properties</subject><subject>Mathematical and Computational Physics</subject><subject>Microscopes</subject><subject>Molecular</subject><subject>Ohmic dissipation</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Point defects</subject><subject>Quantum sensors</subject><subject>Resistance heating</subject><subject>Silicones</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LxDAUDKLgWv0Dngqeoy9Jm6RHWdQVFkRQPIZskrpdbLvmQ9l_b9aK3jzN472ZecwgdE7gkgCTV6EiNRcYKMVAJKlxfYBmRFQ1ppUkh7-zYMfoJIQNQEU5YTPEH5MeYurLvjN-DGbc7srPLq7LDz2U1vnyReu3UK5ddPkcfTIxeRdO0VGb9-7sBwv0fHvzNF_g5cPd_fx6iQ0jTcSUVVaCbQlzjMuVAcbbllNpW1MZaRznXIMWK-EMNNRqC9pk0LUE3djGsQJdTL5bP74nF6LajMkP-aWigmcnKnL-AtGJtY8QvGvV1ne99jtFQO37UVM_KvejvvtRdRaxSRQyeXh1_s_6H9UXQD1pDg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Healey, A. J.</creator><creator>Scholten, S. C.</creator><creator>Yang, T.</creator><creator>Scott, J. A.</creator><creator>Abrahams, G. J.</creator><creator>Robertson, I. O.</creator><creator>Hou, X. F.</creator><creator>Guo, Y. F.</creator><creator>Rahman, S.</creator><creator>Lu, Y.</creator><creator>Kianinia, M.</creator><creator>Aharonovich, I.</creator><creator>Tetienne, J.-P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8494-9341</orcidid><orcidid>https://orcid.org/0000-0001-6131-3906</orcidid><orcidid>https://orcid.org/0000-0002-9386-4857</orcidid><orcidid>https://orcid.org/0000-0001-5727-0288</orcidid><orcidid>https://orcid.org/0000-0003-4304-3935</orcidid><orcidid>https://orcid.org/0000-0001-5796-2508</orcidid><orcidid>https://orcid.org/0000-0001-6477-517X</orcidid><orcidid>https://orcid.org/0000-0002-2195-0406</orcidid><orcidid>https://orcid.org/0000-0003-4073-1492</orcidid></search><sort><creationdate>20230101</creationdate><title>Quantum microscopy with van der Waals heterostructures</title><author>Healey, A. J. ; Scholten, S. C. ; Yang, T. ; Scott, J. A. ; Abrahams, G. J. ; Robertson, I. O. ; Hou, X. F. ; Guo, Y. F. ; Rahman, S. ; Lu, Y. ; Kianinia, M. ; Aharonovich, I. ; Tetienne, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-234d80df13e368bc036ff628dfc4c8ce666a0a7b7ec092dad0ac2daa580a9d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/357/1018</topic><topic>639/624/1107/510</topic><topic>639/766/119/997</topic><topic>639/766/483/1255</topic><topic>639/925/930/2735</topic><topic>Atomic</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Curie temperature</topic><topic>Diamonds</topic><topic>Ferromagnetism</topic><topic>Flakes (defects)</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Material properties</topic><topic>Mathematical and Computational Physics</topic><topic>Microscopes</topic><topic>Molecular</topic><topic>Ohmic dissipation</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Point defects</topic><topic>Quantum sensors</topic><topic>Resistance heating</topic><topic>Silicones</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Healey, A. J.</creatorcontrib><creatorcontrib>Scholten, S. C.</creatorcontrib><creatorcontrib>Yang, T.</creatorcontrib><creatorcontrib>Scott, J. A.</creatorcontrib><creatorcontrib>Abrahams, G. J.</creatorcontrib><creatorcontrib>Robertson, I. O.</creatorcontrib><creatorcontrib>Hou, X. F.</creatorcontrib><creatorcontrib>Guo, Y. F.</creatorcontrib><creatorcontrib>Rahman, S.</creatorcontrib><creatorcontrib>Lu, Y.</creatorcontrib><creatorcontrib>Kianinia, M.</creatorcontrib><creatorcontrib>Aharonovich, I.</creatorcontrib><creatorcontrib>Tetienne, J.-P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Healey, A. J.</au><au>Scholten, S. C.</au><au>Yang, T.</au><au>Scott, J. A.</au><au>Abrahams, G. J.</au><au>Robertson, I. O.</au><au>Hou, X. F.</au><au>Guo, Y. F.</au><au>Rahman, S.</au><au>Lu, Y.</au><au>Kianinia, M.</au><au>Aharonovich, I.</au><au>Tetienne, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum microscopy with van der Waals heterostructures</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>87</spage><epage>91</epage><pages>87-91</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Solid-state spin sensors have the capacity to act as quantum microscopes for probing material properties and physical processes. However, so far, these tools have relied on quantum defects hosted in rigid, three-dimensional (3D) crystals such as diamond, limiting their ability to closely interface with the sample. Here we demonstrate a versatile quantum microscope using point defects embedded within a thin layer of the van der Waals material hexagonal boron nitride. To showcase the multi-modal capabilities of this platform, we assemble two different heterostructures of a van der Waals material in combination with a quantum-active boron nitride flake. We demonstrate time-resolved, simultaneous temperature and magnetic imaging near the Curie temperature of a van der Waals ferromagnet, as well as map out charge currents and Joule heating in an operating graphene device. The straightforward integration of the hexagonal boron nitride quantum sensor with other van der Waals materials will yield substantial practical benefits for the design and measurement of 2D devices. Hexagonal boron nitride is a common component of 2D heterostructures. Defects implanted in boron nitride crystals can be used to perform spatially resolved sensing of properties, including temperature, magnetism and current.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01815-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8494-9341</orcidid><orcidid>https://orcid.org/0000-0001-6131-3906</orcidid><orcidid>https://orcid.org/0000-0002-9386-4857</orcidid><orcidid>https://orcid.org/0000-0001-5727-0288</orcidid><orcidid>https://orcid.org/0000-0003-4304-3935</orcidid><orcidid>https://orcid.org/0000-0001-5796-2508</orcidid><orcidid>https://orcid.org/0000-0001-6477-517X</orcidid><orcidid>https://orcid.org/0000-0002-2195-0406</orcidid><orcidid>https://orcid.org/0000-0003-4073-1492</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2023-01, Vol.19 (1), p.87-91
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2766282710
source Nature; SpringerNature Journals
subjects 639/301/357/1018
639/624/1107/510
639/766/119/997
639/766/483/1255
639/925/930/2735
Atomic
Boron
Boron nitride
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Crystal defects
Crystals
Curie temperature
Diamonds
Ferromagnetism
Flakes (defects)
Graphene
Heterostructures
Magnetic properties
Magnetism
Material properties
Mathematical and Computational Physics
Microscopes
Molecular
Ohmic dissipation
Optical and Plasma Physics
Physics
Physics and Astronomy
Point defects
Quantum sensors
Resistance heating
Silicones
Theoretical
title Quantum microscopy with van der Waals heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20microscopy%20with%20van%20der%20Waals%20heterostructures&rft.jtitle=Nature%20physics&rft.au=Healey,%20A.%20J.&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=87&rft.epage=91&rft.pages=87-91&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01815-5&rft_dat=%3Cproquest_cross%3E2766282710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766282710&rft_id=info:pmid/&rfr_iscdi=true