Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals

Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2021-08, Vol.16 (3), p.5538-5555
Hauptverfasser: Rosli, Noor Afizah, Wan Ishak, Wan Hafizi, Darwis, Siti Salwani, Ahmad, Ishak, Mohd Khairudin, Mohammad Fauzul Azim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5555
container_issue 3
container_start_page 5538
container_title Bioresources
container_volume 16
creator Rosli, Noor Afizah
Wan Ishak, Wan Hafizi
Darwis, Siti Salwani
Ahmad, Ishak
Mohd Khairudin, Mohammad Fauzul Azim
description Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.
doi_str_mv 10.15376/biores.16.3.5538-5555
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766166843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766166843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6831fcae90c754d7fea8e263c64caa5d6259c489f755ff0d27078390027894943</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt_QQbc6GLGPCbJzFJLfUDBja5DJnMjKelkTKZC_fWmrQvv5lwOh3MvH0LXBFeEMynuOxcipIqIilWcs6bkeU7QjLQMl5RQcfpvP0cXKa0xrhtG8AytH10oBz0EEzZjSG6CVHQ6QV-Eodh7enKd8-4nO2Pwu1uvzeRMoY3r74rOw9CXEdxgQzQ5oj_1NxQGvN_6kKA4NMddmrRPl-jMZoGrP52jj6fl--KlXL09vy4eVqVhjEylyI9Zo6HFRvK6lxZ0A1QwI2qjNe8F5a2pm9ZKzq3FPZVYNqzFmMqmrduazdHNsXeM4WsLaVLrsI1DPqmoFIII0dQsp8QxZWJIKYJVY3QbHXeKYHXgqo5cFRGKqT1XtefKfgEEj274</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766166843</pqid></control><display><type>article</type><title>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rosli, Noor Afizah ; Wan Ishak, Wan Hafizi ; Darwis, Siti Salwani ; Ahmad, Ishak ; Mohd Khairudin, Mohammad Fauzul Azim</creator><creatorcontrib>Rosli, Noor Afizah ; Wan Ishak, Wan Hafizi ; Darwis, Siti Salwani ; Ahmad, Ishak ; Mohd Khairudin, Mohammad Fauzul Azim</creatorcontrib><description>Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.</description><identifier>ISSN: 1930-2126</identifier><identifier>EISSN: 1930-2126</identifier><identifier>DOI: 10.15376/biores.16.3.5538-5555</identifier><language>eng</language><publisher>Raleigh: North Carolina State University</publisher><subject>Absorption ; Cellulose ; Chemical treatment ; Crystallization ; Crystals ; Fibers ; Modulus of elasticity ; Nanocomposites ; Nanocrystals ; Natural rubber ; Polylactic acid ; Sustainable materials ; Tensile tests ; Thermal analysis ; Thermal properties ; Thermal stability ; Thermodynamic properties ; Transmission electron microscopy ; Water absorption ; Zeta potential</subject><ispartof>Bioresources, 2021-08, Vol.16 (3), p.5538-5555</ispartof><rights>2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-6831fcae90c754d7fea8e263c64caa5d6259c489f755ff0d27078390027894943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Rosli, Noor Afizah</creatorcontrib><creatorcontrib>Wan Ishak, Wan Hafizi</creatorcontrib><creatorcontrib>Darwis, Siti Salwani</creatorcontrib><creatorcontrib>Ahmad, Ishak</creatorcontrib><creatorcontrib>Mohd Khairudin, Mohammad Fauzul Azim</creatorcontrib><title>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</title><title>Bioresources</title><description>Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.</description><subject>Absorption</subject><subject>Cellulose</subject><subject>Chemical treatment</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Fibers</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Natural rubber</subject><subject>Polylactic acid</subject><subject>Sustainable materials</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Transmission electron microscopy</subject><subject>Water absorption</subject><subject>Zeta potential</subject><issn>1930-2126</issn><issn>1930-2126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLAzEUhYMoWKt_QQbc6GLGPCbJzFJLfUDBja5DJnMjKelkTKZC_fWmrQvv5lwOh3MvH0LXBFeEMynuOxcipIqIilWcs6bkeU7QjLQMl5RQcfpvP0cXKa0xrhtG8AytH10oBz0EEzZjSG6CVHQ6QV-Eodh7enKd8-4nO2Pwu1uvzeRMoY3r74rOw9CXEdxgQzQ5oj_1NxQGvN_6kKA4NMddmrRPl-jMZoGrP52jj6fl--KlXL09vy4eVqVhjEylyI9Zo6HFRvK6lxZ0A1QwI2qjNe8F5a2pm9ZKzq3FPZVYNqzFmMqmrduazdHNsXeM4WsLaVLrsI1DPqmoFIII0dQsp8QxZWJIKYJVY3QbHXeKYHXgqo5cFRGKqT1XtefKfgEEj274</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Rosli, Noor Afizah</creator><creator>Wan Ishak, Wan Hafizi</creator><creator>Darwis, Siti Salwani</creator><creator>Ahmad, Ishak</creator><creator>Mohd Khairudin, Mohammad Fauzul Azim</creator><general>North Carolina State University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210801</creationdate><title>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</title><author>Rosli, Noor Afizah ; Wan Ishak, Wan Hafizi ; Darwis, Siti Salwani ; Ahmad, Ishak ; Mohd Khairudin, Mohammad Fauzul Azim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6831fcae90c754d7fea8e263c64caa5d6259c489f755ff0d27078390027894943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Cellulose</topic><topic>Chemical treatment</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Fibers</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Natural rubber</topic><topic>Polylactic acid</topic><topic>Sustainable materials</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Transmission electron microscopy</topic><topic>Water absorption</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosli, Noor Afizah</creatorcontrib><creatorcontrib>Wan Ishak, Wan Hafizi</creatorcontrib><creatorcontrib>Darwis, Siti Salwani</creatorcontrib><creatorcontrib>Ahmad, Ishak</creatorcontrib><creatorcontrib>Mohd Khairudin, Mohammad Fauzul Azim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Bioresources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosli, Noor Afizah</au><au>Wan Ishak, Wan Hafizi</au><au>Darwis, Siti Salwani</au><au>Ahmad, Ishak</au><au>Mohd Khairudin, Mohammad Fauzul Azim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</atitle><jtitle>Bioresources</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>5538</spage><epage>5555</epage><pages>5538-5555</pages><issn>1930-2126</issn><eissn>1930-2126</eissn><abstract>Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.</abstract><cop>Raleigh</cop><pub>North Carolina State University</pub><doi>10.15376/biores.16.3.5538-5555</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1930-2126
ispartof Bioresources, 2021-08, Vol.16 (3), p.5538-5555
issn 1930-2126
1930-2126
language eng
recordid cdi_proquest_journals_2766166843
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Cellulose
Chemical treatment
Crystallization
Crystals
Fibers
Modulus of elasticity
Nanocomposites
Nanocrystals
Natural rubber
Polylactic acid
Sustainable materials
Tensile tests
Thermal analysis
Thermal properties
Thermal stability
Thermodynamic properties
Transmission electron microscopy
Water absorption
Zeta potential
title Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-nanocomposites%20based%20on%20compatibilized%20poly(lactic%20acid)%20blend-reinforced%20agave%20cellulose%20nanocrystals&rft.jtitle=Bioresources&rft.au=Rosli,%20Noor%20Afizah&rft.date=2021-08-01&rft.volume=16&rft.issue=3&rft.spage=5538&rft.epage=5555&rft.pages=5538-5555&rft.issn=1930-2126&rft.eissn=1930-2126&rft_id=info:doi/10.15376/biores.16.3.5538-5555&rft_dat=%3Cproquest_cross%3E2766166843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766166843&rft_id=info:pmid/&rfr_iscdi=true