Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals
Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nan...
Gespeichert in:
Veröffentlicht in: | Bioresources 2021-08, Vol.16 (3), p.5538-5555 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5555 |
---|---|
container_issue | 3 |
container_start_page | 5538 |
container_title | Bioresources |
container_volume | 16 |
creator | Rosli, Noor Afizah Wan Ishak, Wan Hafizi Darwis, Siti Salwani Ahmad, Ishak Mohd Khairudin, Mohammad Fauzul Azim |
description | Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties. |
doi_str_mv | 10.15376/biores.16.3.5538-5555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2766166843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766166843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6831fcae90c754d7fea8e263c64caa5d6259c489f755ff0d27078390027894943</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt_QQbc6GLGPCbJzFJLfUDBja5DJnMjKelkTKZC_fWmrQvv5lwOh3MvH0LXBFeEMynuOxcipIqIilWcs6bkeU7QjLQMl5RQcfpvP0cXKa0xrhtG8AytH10oBz0EEzZjSG6CVHQ6QV-Eodh7enKd8-4nO2Pwu1uvzeRMoY3r74rOw9CXEdxgQzQ5oj_1NxQGvN_6kKA4NMddmrRPl-jMZoGrP52jj6fl--KlXL09vy4eVqVhjEylyI9Zo6HFRvK6lxZ0A1QwI2qjNe8F5a2pm9ZKzq3FPZVYNqzFmMqmrduazdHNsXeM4WsLaVLrsI1DPqmoFIII0dQsp8QxZWJIKYJVY3QbHXeKYHXgqo5cFRGKqT1XtefKfgEEj274</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766166843</pqid></control><display><type>article</type><title>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rosli, Noor Afizah ; Wan Ishak, Wan Hafizi ; Darwis, Siti Salwani ; Ahmad, Ishak ; Mohd Khairudin, Mohammad Fauzul Azim</creator><creatorcontrib>Rosli, Noor Afizah ; Wan Ishak, Wan Hafizi ; Darwis, Siti Salwani ; Ahmad, Ishak ; Mohd Khairudin, Mohammad Fauzul Azim</creatorcontrib><description>Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.</description><identifier>ISSN: 1930-2126</identifier><identifier>EISSN: 1930-2126</identifier><identifier>DOI: 10.15376/biores.16.3.5538-5555</identifier><language>eng</language><publisher>Raleigh: North Carolina State University</publisher><subject>Absorption ; Cellulose ; Chemical treatment ; Crystallization ; Crystals ; Fibers ; Modulus of elasticity ; Nanocomposites ; Nanocrystals ; Natural rubber ; Polylactic acid ; Sustainable materials ; Tensile tests ; Thermal analysis ; Thermal properties ; Thermal stability ; Thermodynamic properties ; Transmission electron microscopy ; Water absorption ; Zeta potential</subject><ispartof>Bioresources, 2021-08, Vol.16 (3), p.5538-5555</ispartof><rights>2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-6831fcae90c754d7fea8e263c64caa5d6259c489f755ff0d27078390027894943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Rosli, Noor Afizah</creatorcontrib><creatorcontrib>Wan Ishak, Wan Hafizi</creatorcontrib><creatorcontrib>Darwis, Siti Salwani</creatorcontrib><creatorcontrib>Ahmad, Ishak</creatorcontrib><creatorcontrib>Mohd Khairudin, Mohammad Fauzul Azim</creatorcontrib><title>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</title><title>Bioresources</title><description>Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.</description><subject>Absorption</subject><subject>Cellulose</subject><subject>Chemical treatment</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Fibers</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Natural rubber</subject><subject>Polylactic acid</subject><subject>Sustainable materials</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><subject>Transmission electron microscopy</subject><subject>Water absorption</subject><subject>Zeta potential</subject><issn>1930-2126</issn><issn>1930-2126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLAzEUhYMoWKt_QQbc6GLGPCbJzFJLfUDBja5DJnMjKelkTKZC_fWmrQvv5lwOh3MvH0LXBFeEMynuOxcipIqIilWcs6bkeU7QjLQMl5RQcfpvP0cXKa0xrhtG8AytH10oBz0EEzZjSG6CVHQ6QV-Eodh7enKd8-4nO2Pwu1uvzeRMoY3r74rOw9CXEdxgQzQ5oj_1NxQGvN_6kKA4NMddmrRPl-jMZoGrP52jj6fl--KlXL09vy4eVqVhjEylyI9Zo6HFRvK6lxZ0A1QwI2qjNe8F5a2pm9ZKzq3FPZVYNqzFmMqmrduazdHNsXeM4WsLaVLrsI1DPqmoFIII0dQsp8QxZWJIKYJVY3QbHXeKYHXgqo5cFRGKqT1XtefKfgEEj274</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Rosli, Noor Afizah</creator><creator>Wan Ishak, Wan Hafizi</creator><creator>Darwis, Siti Salwani</creator><creator>Ahmad, Ishak</creator><creator>Mohd Khairudin, Mohammad Fauzul Azim</creator><general>North Carolina State University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210801</creationdate><title>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</title><author>Rosli, Noor Afizah ; Wan Ishak, Wan Hafizi ; Darwis, Siti Salwani ; Ahmad, Ishak ; Mohd Khairudin, Mohammad Fauzul Azim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6831fcae90c754d7fea8e263c64caa5d6259c489f755ff0d27078390027894943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Cellulose</topic><topic>Chemical treatment</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Fibers</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Natural rubber</topic><topic>Polylactic acid</topic><topic>Sustainable materials</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><topic>Transmission electron microscopy</topic><topic>Water absorption</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosli, Noor Afizah</creatorcontrib><creatorcontrib>Wan Ishak, Wan Hafizi</creatorcontrib><creatorcontrib>Darwis, Siti Salwani</creatorcontrib><creatorcontrib>Ahmad, Ishak</creatorcontrib><creatorcontrib>Mohd Khairudin, Mohammad Fauzul Azim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Bioresources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosli, Noor Afizah</au><au>Wan Ishak, Wan Hafizi</au><au>Darwis, Siti Salwani</au><au>Ahmad, Ishak</au><au>Mohd Khairudin, Mohammad Fauzul Azim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals</atitle><jtitle>Bioresources</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>5538</spage><epage>5555</epage><pages>5538-5555</pages><issn>1930-2126</issn><eissn>1930-2126</eissn><abstract>Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.</abstract><cop>Raleigh</cop><pub>North Carolina State University</pub><doi>10.15376/biores.16.3.5538-5555</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1930-2126 |
ispartof | Bioresources, 2021-08, Vol.16 (3), p.5538-5555 |
issn | 1930-2126 1930-2126 |
language | eng |
recordid | cdi_proquest_journals_2766166843 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Absorption Cellulose Chemical treatment Crystallization Crystals Fibers Modulus of elasticity Nanocomposites Nanocrystals Natural rubber Polylactic acid Sustainable materials Tensile tests Thermal analysis Thermal properties Thermal stability Thermodynamic properties Transmission electron microscopy Water absorption Zeta potential |
title | Bio-nanocomposites based on compatibilized poly(lactic acid) blend-reinforced agave cellulose nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-nanocomposites%20based%20on%20compatibilized%20poly(lactic%20acid)%20blend-reinforced%20agave%20cellulose%20nanocrystals&rft.jtitle=Bioresources&rft.au=Rosli,%20Noor%20Afizah&rft.date=2021-08-01&rft.volume=16&rft.issue=3&rft.spage=5538&rft.epage=5555&rft.pages=5538-5555&rft.issn=1930-2126&rft.eissn=1930-2126&rft_id=info:doi/10.15376/biores.16.3.5538-5555&rft_dat=%3Cproquest_cross%3E2766166843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766166843&rft_id=info:pmid/&rfr_iscdi=true |