Backstepping-based tracking control of the vertical gradient freeze crystal growth process

The vertical gradient freeze crystal growth process is the main technique for the production of high quality compound semiconductors that are vital for today's electronic applications. A simplified model of this process consists of two 1D diffusion equations with free boundaries for the tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Ecklebe, Stefan, Gehring, Nicole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ecklebe, Stefan
Gehring, Nicole
description The vertical gradient freeze crystal growth process is the main technique for the production of high quality compound semiconductors that are vital for today's electronic applications. A simplified model of this process consists of two 1D diffusion equations with free boundaries for the temperatures in crystal and melt. Both phases are coupled via an ordinary differential equation that describes the evolution of the moving solid/liquid interface. The control of the resulting two-phase Stefan problem is the focus of this contribution. A flatness-based feedforward design is combined with a multi-step backstepping approach to obtain a controller that tracks a reference trajectory for the position of the phase boundary. Specifically, based on some preliminary transformations to map the model into a time-variant PDE-ODE system, consecutive decoupling and backstepping transformations are shown to yield a stable closed loop. The tracking controller is validated in a simulation that considers the actual growth of a Gallium arsenide single crystal.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2765878277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765878277</sourcerecordid><originalsourceid>FETCH-proquest_journals_27658782773</originalsourceid><addsrcrecordid>eNqNik0KwjAQRoMgWLR3GHBdqKltulYUD-DKTYnp9M_S1MxU0dMbxAO4-njvfTMRyCTZRPlWyoUIibo4jmWmZJomgbjstLkR4zi2Qx1dNWEJ7LzzCMYO7GwPtgJuEB7ouDW6h9rpssWBoXKIbwTjXsRfb5_cwOisQaKVmFe6Jwx_uxTr4-G8P0W-3yckLjo7ucGnQqoszVUulUr-e30AsP1Dyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765878277</pqid></control><display><type>article</type><title>Backstepping-based tracking control of the vertical gradient freeze crystal growth process</title><source>Free eJournals</source><creator>Ecklebe, Stefan ; Gehring, Nicole</creator><creatorcontrib>Ecklebe, Stefan ; Gehring, Nicole</creatorcontrib><description>The vertical gradient freeze crystal growth process is the main technique for the production of high quality compound semiconductors that are vital for today's electronic applications. A simplified model of this process consists of two 1D diffusion equations with free boundaries for the temperatures in crystal and melt. Both phases are coupled via an ordinary differential equation that describes the evolution of the moving solid/liquid interface. The control of the resulting two-phase Stefan problem is the focus of this contribution. A flatness-based feedforward design is combined with a multi-step backstepping approach to obtain a controller that tracks a reference trajectory for the position of the phase boundary. Specifically, based on some preliminary transformations to map the model into a time-variant PDE-ODE system, consecutive decoupling and backstepping transformations are shown to yield a stable closed loop. The tracking controller is validated in a simulation that considers the actual growth of a Gallium arsenide single crystal.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Closed loops ; Controllers ; Crystal growth ; Crystals ; Decoupling ; Free boundaries ; Gallium arsenide ; Ordinary differential equations ; Partial differential equations ; Single crystals ; Tracking control ; Transformations (mathematics)</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ecklebe, Stefan</creatorcontrib><creatorcontrib>Gehring, Nicole</creatorcontrib><title>Backstepping-based tracking control of the vertical gradient freeze crystal growth process</title><title>arXiv.org</title><description>The vertical gradient freeze crystal growth process is the main technique for the production of high quality compound semiconductors that are vital for today's electronic applications. A simplified model of this process consists of two 1D diffusion equations with free boundaries for the temperatures in crystal and melt. Both phases are coupled via an ordinary differential equation that describes the evolution of the moving solid/liquid interface. The control of the resulting two-phase Stefan problem is the focus of this contribution. A flatness-based feedforward design is combined with a multi-step backstepping approach to obtain a controller that tracks a reference trajectory for the position of the phase boundary. Specifically, based on some preliminary transformations to map the model into a time-variant PDE-ODE system, consecutive decoupling and backstepping transformations are shown to yield a stable closed loop. The tracking controller is validated in a simulation that considers the actual growth of a Gallium arsenide single crystal.</description><subject>Closed loops</subject><subject>Controllers</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Decoupling</subject><subject>Free boundaries</subject><subject>Gallium arsenide</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Single crystals</subject><subject>Tracking control</subject><subject>Transformations (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNik0KwjAQRoMgWLR3GHBdqKltulYUD-DKTYnp9M_S1MxU0dMbxAO4-njvfTMRyCTZRPlWyoUIibo4jmWmZJomgbjstLkR4zi2Qx1dNWEJ7LzzCMYO7GwPtgJuEB7ouDW6h9rpssWBoXKIbwTjXsRfb5_cwOisQaKVmFe6Jwx_uxTr4-G8P0W-3yckLjo7ucGnQqoszVUulUr-e30AsP1Dyw</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Ecklebe, Stefan</creator><creator>Gehring, Nicole</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230123</creationdate><title>Backstepping-based tracking control of the vertical gradient freeze crystal growth process</title><author>Ecklebe, Stefan ; Gehring, Nicole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27658782773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Closed loops</topic><topic>Controllers</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Decoupling</topic><topic>Free boundaries</topic><topic>Gallium arsenide</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Single crystals</topic><topic>Tracking control</topic><topic>Transformations (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ecklebe, Stefan</creatorcontrib><creatorcontrib>Gehring, Nicole</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ecklebe, Stefan</au><au>Gehring, Nicole</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Backstepping-based tracking control of the vertical gradient freeze crystal growth process</atitle><jtitle>arXiv.org</jtitle><date>2023-01-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The vertical gradient freeze crystal growth process is the main technique for the production of high quality compound semiconductors that are vital for today's electronic applications. A simplified model of this process consists of two 1D diffusion equations with free boundaries for the temperatures in crystal and melt. Both phases are coupled via an ordinary differential equation that describes the evolution of the moving solid/liquid interface. The control of the resulting two-phase Stefan problem is the focus of this contribution. A flatness-based feedforward design is combined with a multi-step backstepping approach to obtain a controller that tracks a reference trajectory for the position of the phase boundary. Specifically, based on some preliminary transformations to map the model into a time-variant PDE-ODE system, consecutive decoupling and backstepping transformations are shown to yield a stable closed loop. The tracking controller is validated in a simulation that considers the actual growth of a Gallium arsenide single crystal.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2765878277
source Free eJournals
subjects Closed loops
Controllers
Crystal growth
Crystals
Decoupling
Free boundaries
Gallium arsenide
Ordinary differential equations
Partial differential equations
Single crystals
Tracking control
Transformations (mathematics)
title Backstepping-based tracking control of the vertical gradient freeze crystal growth process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Backstepping-based%20tracking%20control%20of%20the%20vertical%20gradient%20freeze%20crystal%20growth%20process&rft.jtitle=arXiv.org&rft.au=Ecklebe,%20Stefan&rft.date=2023-01-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2765878277%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765878277&rft_id=info:pmid/&rfr_iscdi=true