MEDIC: a multi-task learning dataset for disaster image classification

Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and suffering during natural disasters based on social media contents (text and images). While notable progress has been made using texts, research on exploiting the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2023, Vol.35 (3), p.2609-2632
Hauptverfasser: Alam, Firoj, Alam, Tanvirul, Hasan, Md. Arid, Hasnat, Abul, Imran, Muhammad, Ofli, Ferda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and suffering during natural disasters based on social media contents (text and images). While notable progress has been made using texts, research on exploiting the images remains relatively under-explored. To advance image-based approaches, we propose MEDIC ( https://crisisnlp.qcri.org/medic/index.html ), which is the largest social media image classification dataset for humanitarian response consisting of 71,198 images to address four different tasks in a multi-task learning setup. This is the first dataset of its kind: social media images, disaster response, and multi-task learning research. An important property of this dataset is its high potential to facilitate research on multi-task learning , which recently receives much interest from the machine learning community and has shown remarkable results in terms of memory, inference speed, performance, and generalization capability. Therefore, the proposed dataset is an important resource for advancing image-based disaster management and multi-task machine learning research. We experiment with different deep learning architectures and report promising results, which are above the majority baselines for all tasks. Along with the dataset, we also release all relevant scripts ( https://github.com/firojalam/medic ).
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-022-07717-0