Investment portfolio tracking using model predictive control
The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2023-01, Vol.44 (1), p.259-274 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 1 |
container_start_page | 259 |
container_title | Optimal control applications & methods |
container_volume | 44 |
creator | Melo, Maisa Kely Nogueira Cardoso, Rodrigo Tomás Argolo Jesus, Tales Vianna Raffo, Guilherme |
description | The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints. |
doi_str_mv | 10.1002/oca.2937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765603309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765603309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbBnxDw4iV1drfZD_BSih-FQi96XpLNjqQm2bibVPrvTaxXGZi5PLzz8BJyS2FBAdiDt_mCaS7PyIyC1inN6PKczIAuecpAyUtyFeMeACTlbEYeN-3Bxb5xbZ90PvTo68onfcjtZ9V-JEOcduNLVyddcGVl--rgEuvbPvj6mlxgXkd383fn5P356W39mm53L5v1apvaySQtldUIXCgUqiylYsisFqwQUHCFhXbWlUgFB8sVZNI6WVA1DipEFJjzObk75XbBfw2jrtn7IbTjS8OkyARwDnqk7k-UDT7G4NB0oWrycDQUzNSNGbsxk9GIpif0u6rd8V_O7NarX_4HSsFlgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765603309</pqid></control><display><type>article</type><title>Investment portfolio tracking using model predictive control</title><source>Wiley Journals</source><creator>Melo, Maisa Kely ; Nogueira Cardoso, Rodrigo Tomás ; Argolo Jesus, Tales ; Vianna Raffo, Guilherme</creator><creatorcontrib>Melo, Maisa Kely ; Nogueira Cardoso, Rodrigo Tomás ; Argolo Jesus, Tales ; Vianna Raffo, Guilherme</creatorcontrib><description>The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2937</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Data exchange ; Investments ; model predictive control ; Optimal control ; Optimization models ; portfolio selection ; portfolio tracking ; Predictive control ; Stock exchanges ; Strategy ; Tracking control ; Tracking errors</subject><ispartof>Optimal control applications & methods, 2023-01, Vol.44 (1), p.259-274</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</citedby><cites>FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</cites><orcidid>0000-0002-1835-8380 ; 0000-0001-8120-9778 ; 0000-0002-6784-2929 ; 0000-0001-9279-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2937$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2937$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Melo, Maisa Kely</creatorcontrib><creatorcontrib>Nogueira Cardoso, Rodrigo Tomás</creatorcontrib><creatorcontrib>Argolo Jesus, Tales</creatorcontrib><creatorcontrib>Vianna Raffo, Guilherme</creatorcontrib><title>Investment portfolio tracking using model predictive control</title><title>Optimal control applications & methods</title><description>The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.</description><subject>Algorithms</subject><subject>Data exchange</subject><subject>Investments</subject><subject>model predictive control</subject><subject>Optimal control</subject><subject>Optimization models</subject><subject>portfolio selection</subject><subject>portfolio tracking</subject><subject>Predictive control</subject><subject>Stock exchanges</subject><subject>Strategy</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbBnxDw4iV1drfZD_BSih-FQi96XpLNjqQm2bibVPrvTaxXGZi5PLzz8BJyS2FBAdiDt_mCaS7PyIyC1inN6PKczIAuecpAyUtyFeMeACTlbEYeN-3Bxb5xbZ90PvTo68onfcjtZ9V-JEOcduNLVyddcGVl--rgEuvbPvj6mlxgXkd383fn5P356W39mm53L5v1apvaySQtldUIXCgUqiylYsisFqwQUHCFhXbWlUgFB8sVZNI6WVA1DipEFJjzObk75XbBfw2jrtn7IbTjS8OkyARwDnqk7k-UDT7G4NB0oWrycDQUzNSNGbsxk9GIpif0u6rd8V_O7NarX_4HSsFlgQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Melo, Maisa Kely</creator><creator>Nogueira Cardoso, Rodrigo Tomás</creator><creator>Argolo Jesus, Tales</creator><creator>Vianna Raffo, Guilherme</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1835-8380</orcidid><orcidid>https://orcid.org/0000-0001-8120-9778</orcidid><orcidid>https://orcid.org/0000-0002-6784-2929</orcidid><orcidid>https://orcid.org/0000-0001-9279-1249</orcidid></search><sort><creationdate>202301</creationdate><title>Investment portfolio tracking using model predictive control</title><author>Melo, Maisa Kely ; Nogueira Cardoso, Rodrigo Tomás ; Argolo Jesus, Tales ; Vianna Raffo, Guilherme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Data exchange</topic><topic>Investments</topic><topic>model predictive control</topic><topic>Optimal control</topic><topic>Optimization models</topic><topic>portfolio selection</topic><topic>portfolio tracking</topic><topic>Predictive control</topic><topic>Stock exchanges</topic><topic>Strategy</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melo, Maisa Kely</creatorcontrib><creatorcontrib>Nogueira Cardoso, Rodrigo Tomás</creatorcontrib><creatorcontrib>Argolo Jesus, Tales</creatorcontrib><creatorcontrib>Vianna Raffo, Guilherme</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Maisa Kely</au><au>Nogueira Cardoso, Rodrigo Tomás</au><au>Argolo Jesus, Tales</au><au>Vianna Raffo, Guilherme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investment portfolio tracking using model predictive control</atitle><jtitle>Optimal control applications & methods</jtitle><date>2023-01</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>259</spage><epage>274</epage><pages>259-274</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2937</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1835-8380</orcidid><orcidid>https://orcid.org/0000-0001-8120-9778</orcidid><orcidid>https://orcid.org/0000-0002-6784-2929</orcidid><orcidid>https://orcid.org/0000-0001-9279-1249</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2023-01, Vol.44 (1), p.259-274 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_journals_2765603309 |
source | Wiley Journals |
subjects | Algorithms Data exchange Investments model predictive control Optimal control Optimization models portfolio selection portfolio tracking Predictive control Stock exchanges Strategy Tracking control Tracking errors |
title | Investment portfolio tracking using model predictive control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investment%20portfolio%20tracking%20using%20model%20predictive%20control&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Melo,%20Maisa%20Kely&rft.date=2023-01&rft.volume=44&rft.issue=1&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2937&rft_dat=%3Cproquest_cross%3E2765603309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765603309&rft_id=info:pmid/&rfr_iscdi=true |