Investment portfolio tracking using model predictive control

The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2023-01, Vol.44 (1), p.259-274
Hauptverfasser: Melo, Maisa Kely, Nogueira Cardoso, Rodrigo Tomás, Argolo Jesus, Tales, Vianna Raffo, Guilherme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 1
container_start_page 259
container_title Optimal control applications & methods
container_volume 44
creator Melo, Maisa Kely
Nogueira Cardoso, Rodrigo Tomás
Argolo Jesus, Tales
Vianna Raffo, Guilherme
description The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.
doi_str_mv 10.1002/oca.2937
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765603309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765603309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbBnxDw4iV1drfZD_BSih-FQi96XpLNjqQm2bibVPrvTaxXGZi5PLzz8BJyS2FBAdiDt_mCaS7PyIyC1inN6PKczIAuecpAyUtyFeMeACTlbEYeN-3Bxb5xbZ90PvTo68onfcjtZ9V-JEOcduNLVyddcGVl--rgEuvbPvj6mlxgXkd383fn5P356W39mm53L5v1apvaySQtldUIXCgUqiylYsisFqwQUHCFhXbWlUgFB8sVZNI6WVA1DipEFJjzObk75XbBfw2jrtn7IbTjS8OkyARwDnqk7k-UDT7G4NB0oWrycDQUzNSNGbsxk9GIpif0u6rd8V_O7NarX_4HSsFlgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765603309</pqid></control><display><type>article</type><title>Investment portfolio tracking using model predictive control</title><source>Wiley Journals</source><creator>Melo, Maisa Kely ; Nogueira Cardoso, Rodrigo Tomás ; Argolo Jesus, Tales ; Vianna Raffo, Guilherme</creator><creatorcontrib>Melo, Maisa Kely ; Nogueira Cardoso, Rodrigo Tomás ; Argolo Jesus, Tales ; Vianna Raffo, Guilherme</creatorcontrib><description>The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2937</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Data exchange ; Investments ; model predictive control ; Optimal control ; Optimization models ; portfolio selection ; portfolio tracking ; Predictive control ; Stock exchanges ; Strategy ; Tracking control ; Tracking errors</subject><ispartof>Optimal control applications &amp; methods, 2023-01, Vol.44 (1), p.259-274</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</citedby><cites>FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</cites><orcidid>0000-0002-1835-8380 ; 0000-0001-8120-9778 ; 0000-0002-6784-2929 ; 0000-0001-9279-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2937$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2937$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Melo, Maisa Kely</creatorcontrib><creatorcontrib>Nogueira Cardoso, Rodrigo Tomás</creatorcontrib><creatorcontrib>Argolo Jesus, Tales</creatorcontrib><creatorcontrib>Vianna Raffo, Guilherme</creatorcontrib><title>Investment portfolio tracking using model predictive control</title><title>Optimal control applications &amp; methods</title><description>The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.</description><subject>Algorithms</subject><subject>Data exchange</subject><subject>Investments</subject><subject>model predictive control</subject><subject>Optimal control</subject><subject>Optimization models</subject><subject>portfolio selection</subject><subject>portfolio tracking</subject><subject>Predictive control</subject><subject>Stock exchanges</subject><subject>Strategy</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbBnxDw4iV1drfZD_BSih-FQi96XpLNjqQm2bibVPrvTaxXGZi5PLzz8BJyS2FBAdiDt_mCaS7PyIyC1inN6PKczIAuecpAyUtyFeMeACTlbEYeN-3Bxb5xbZ90PvTo68onfcjtZ9V-JEOcduNLVyddcGVl--rgEuvbPvj6mlxgXkd383fn5P356W39mm53L5v1apvaySQtldUIXCgUqiylYsisFqwQUHCFhXbWlUgFB8sVZNI6WVA1DipEFJjzObk75XbBfw2jrtn7IbTjS8OkyARwDnqk7k-UDT7G4NB0oWrycDQUzNSNGbsxk9GIpif0u6rd8V_O7NarX_4HSsFlgQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Melo, Maisa Kely</creator><creator>Nogueira Cardoso, Rodrigo Tomás</creator><creator>Argolo Jesus, Tales</creator><creator>Vianna Raffo, Guilherme</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1835-8380</orcidid><orcidid>https://orcid.org/0000-0001-8120-9778</orcidid><orcidid>https://orcid.org/0000-0002-6784-2929</orcidid><orcidid>https://orcid.org/0000-0001-9279-1249</orcidid></search><sort><creationdate>202301</creationdate><title>Investment portfolio tracking using model predictive control</title><author>Melo, Maisa Kely ; Nogueira Cardoso, Rodrigo Tomás ; Argolo Jesus, Tales ; Vianna Raffo, Guilherme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-d8c9f0368f68dd782f2c962b60b38fb9ecedf1630c38057ce7b18181f8fff6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Data exchange</topic><topic>Investments</topic><topic>model predictive control</topic><topic>Optimal control</topic><topic>Optimization models</topic><topic>portfolio selection</topic><topic>portfolio tracking</topic><topic>Predictive control</topic><topic>Stock exchanges</topic><topic>Strategy</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melo, Maisa Kely</creatorcontrib><creatorcontrib>Nogueira Cardoso, Rodrigo Tomás</creatorcontrib><creatorcontrib>Argolo Jesus, Tales</creatorcontrib><creatorcontrib>Vianna Raffo, Guilherme</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Maisa Kely</au><au>Nogueira Cardoso, Rodrigo Tomás</au><au>Argolo Jesus, Tales</au><au>Vianna Raffo, Guilherme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investment portfolio tracking using model predictive control</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2023-01</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>259</spage><epage>274</epage><pages>259-274</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>The composition of an investment portfolio aiming to increase the financial returns while reducing the exposure to risk is a topic of growing interest in the world. In this direction, we propose a model predictive control (MPC) strategy in order to optimize the investment portfolio selection taking into account the tracking of a reference portfolio with desired return. In addition, an analysis comparing different sizes of the prediction horizon according to VPH‐MPC (Varying Predictive Horizon‐MPC) and FPH‐MPC (Fixed Predictive Horizon‐MPC) algorithms is conducted. Finally, we propose an optimal control problem using the tracking error as a function of loss of CVaR (Conditional Value at Risk) measurement. Numerical experiments are run based on Brazilian Stock Exchange data. The experimental results are compared with the Markowitz portfolio optimization model, a conventional tracking strategy, and benchmarks from the Brazilian financial market. This comparison indicates a good tracking performance obtained by the proposed MPC in the two versions while satisfying the constraints.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2937</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1835-8380</orcidid><orcidid>https://orcid.org/0000-0001-8120-9778</orcidid><orcidid>https://orcid.org/0000-0002-6784-2929</orcidid><orcidid>https://orcid.org/0000-0001-9279-1249</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2023-01, Vol.44 (1), p.259-274
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_journals_2765603309
source Wiley Journals
subjects Algorithms
Data exchange
Investments
model predictive control
Optimal control
Optimization models
portfolio selection
portfolio tracking
Predictive control
Stock exchanges
Strategy
Tracking control
Tracking errors
title Investment portfolio tracking using model predictive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investment%20portfolio%20tracking%20using%20model%20predictive%20control&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Melo,%20Maisa%20Kely&rft.date=2023-01&rft.volume=44&rft.issue=1&rft.spage=259&rft.epage=274&rft.pages=259-274&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2937&rft_dat=%3Cproquest_cross%3E2765603309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765603309&rft_id=info:pmid/&rfr_iscdi=true