Particle Design and Evaluation for Electrocatalysts of Polymer Electrolyte Fuel Cells

In proton exchange membrane fuel cells operating with the use of Pt catalyst supported on carbon (Pt/C) cathode catalysts, severe corrosion of the carbon support has been recognized at high potentials. Highly catalytic durability with high activity is required toward the application of heavy-duty us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Funtai Kogakkaishi Japan, 2022/11/10, Vol.59(11), pp.582-588
1. Verfasser: Kakinuma, Katsuyoshi
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 11
container_start_page 582
container_title Funtai Kogakkaishi
container_volume 59
creator Kakinuma, Katsuyoshi
description In proton exchange membrane fuel cells operating with the use of Pt catalyst supported on carbon (Pt/C) cathode catalysts, severe corrosion of the carbon support has been recognized at high potentials. Highly catalytic durability with high activity is required toward the application of heavy-duty use. One of the alternative candidate catalysts are Pt catalysts supported on non-carbon ceramic supports. Our group invented that Pt catalysts supported on SnO2 and CeO2 without carbon additive. These catalysts were superior in durability (startup/shutdown, load cycling) and oxygen reduction reaction activity to those of commercial Pt/C by evaluation of membrane-electrode assemblies. The non-carbon support of SnO2 nanoparticles has a unique carbon-like microstructure consisting of a fused-aggregate network structure, which enhances the electronically conducting pathways via the aggregated microstructure and gas diffusion pathways via the open pores in the microstructure. The cell performance using the Pt/SnO2 cathode catalyst layers at operating temperatures from 80°C to 120°C is quite promising for the development of high-power density with simultaneous high durability.
doi_str_mv 10.4164/sptj.59.582
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765438836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765438836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1236-aba098db341305ddf32602f3c4071c605b4e9d691a1d68e316935dbcf3838c323</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOOZO_gMBj9KZH02aHHVuKgzcwZ1DmqazI2tmkgr97-026ek7vM_7fvAAcI_RPMc8f4rHtJ8zOWeCXIEJFoJmBaHyGkwQFTzjmBW3YBZjUyKEZEGIJBOw3eiQGuMsfLWx2bVQtxVc_mrX6dT4FtY-wKWzJgVvdNKujylCX8ONd_3Bjpnrk4Wrzjq4sM7FO3BTaxft7P9OwXa1_Fq8Z-vPt4_F8zozmFCe6VIjKaqS5pgiVlU1JRyRmpocFdhwxMrcyopLrHHFhaWYS8qq0tRUUGEooVPwcNk9Bv_T2ZjU3nehHV4qUnCW00ECH6jHC2WCjzHYWh1Dc9ChVxipkzp1UqeYVIO6gX650PuY9M6O7L-nkcX43DiXxtB866BsS_8Ay8d5mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765438836</pqid></control><display><type>article</type><title>Particle Design and Evaluation for Electrocatalysts of Polymer Electrolyte Fuel Cells</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kakinuma, Katsuyoshi</creator><creatorcontrib>Kakinuma, Katsuyoshi</creatorcontrib><description>In proton exchange membrane fuel cells operating with the use of Pt catalyst supported on carbon (Pt/C) cathode catalysts, severe corrosion of the carbon support has been recognized at high potentials. Highly catalytic durability with high activity is required toward the application of heavy-duty use. One of the alternative candidate catalysts are Pt catalysts supported on non-carbon ceramic supports. Our group invented that Pt catalysts supported on SnO2 and CeO2 without carbon additive. These catalysts were superior in durability (startup/shutdown, load cycling) and oxygen reduction reaction activity to those of commercial Pt/C by evaluation of membrane-electrode assemblies. The non-carbon support of SnO2 nanoparticles has a unique carbon-like microstructure consisting of a fused-aggregate network structure, which enhances the electronically conducting pathways via the aggregated microstructure and gas diffusion pathways via the open pores in the microstructure. The cell performance using the Pt/SnO2 cathode catalyst layers at operating temperatures from 80°C to 120°C is quite promising for the development of high-power density with simultaneous high durability.</description><identifier>ISSN: 0386-6157</identifier><identifier>EISSN: 1883-7239</identifier><identifier>DOI: 10.4164/sptj.59.582</identifier><language>eng ; jpn</language><publisher>Kyoto: The Society of Powder Technology, Japan</publisher><subject>Carbon ; Catalysts ; Cathodes ; Cerium oxides ; Chemical reduction ; Conducting oxide nanoparticles ; Durability ; Electrocatalysts ; Electrochemical activity ; Electrolytic cells ; Fuel cells ; Gaseous diffusion ; Microstructure ; Nanoparticles ; Operating temperature ; Oxygen reduction reactions ; Polymer electrolyte fuel cell ; Proton exchange membrane fuel cells ; Pt nanoparticles ; Tin dioxide</subject><ispartof>Journal of the Society of Powder Technology, Japan, 2022/11/10, Vol.59(11), pp.582-588</ispartof><rights>2022 The Society of Powder Technology, Japan</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1236-aba098db341305ddf32602f3c4071c605b4e9d691a1d68e316935dbcf3838c323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Kakinuma, Katsuyoshi</creatorcontrib><title>Particle Design and Evaluation for Electrocatalysts of Polymer Electrolyte Fuel Cells</title><title>Funtai Kogakkaishi</title><addtitle>J. Soc. Powder Technol., Japan</addtitle><description>In proton exchange membrane fuel cells operating with the use of Pt catalyst supported on carbon (Pt/C) cathode catalysts, severe corrosion of the carbon support has been recognized at high potentials. Highly catalytic durability with high activity is required toward the application of heavy-duty use. One of the alternative candidate catalysts are Pt catalysts supported on non-carbon ceramic supports. Our group invented that Pt catalysts supported on SnO2 and CeO2 without carbon additive. These catalysts were superior in durability (startup/shutdown, load cycling) and oxygen reduction reaction activity to those of commercial Pt/C by evaluation of membrane-electrode assemblies. The non-carbon support of SnO2 nanoparticles has a unique carbon-like microstructure consisting of a fused-aggregate network structure, which enhances the electronically conducting pathways via the aggregated microstructure and gas diffusion pathways via the open pores in the microstructure. The cell performance using the Pt/SnO2 cathode catalyst layers at operating temperatures from 80°C to 120°C is quite promising for the development of high-power density with simultaneous high durability.</description><subject>Carbon</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Cerium oxides</subject><subject>Chemical reduction</subject><subject>Conducting oxide nanoparticles</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemical activity</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Gaseous diffusion</subject><subject>Microstructure</subject><subject>Nanoparticles</subject><subject>Operating temperature</subject><subject>Oxygen reduction reactions</subject><subject>Polymer electrolyte fuel cell</subject><subject>Proton exchange membrane fuel cells</subject><subject>Pt nanoparticles</subject><subject>Tin dioxide</subject><issn>0386-6157</issn><issn>1883-7239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOOZO_gMBj9KZH02aHHVuKgzcwZ1DmqazI2tmkgr97-026ek7vM_7fvAAcI_RPMc8f4rHtJ8zOWeCXIEJFoJmBaHyGkwQFTzjmBW3YBZjUyKEZEGIJBOw3eiQGuMsfLWx2bVQtxVc_mrX6dT4FtY-wKWzJgVvdNKujylCX8ONd_3Bjpnrk4Wrzjq4sM7FO3BTaxft7P9OwXa1_Fq8Z-vPt4_F8zozmFCe6VIjKaqS5pgiVlU1JRyRmpocFdhwxMrcyopLrHHFhaWYS8qq0tRUUGEooVPwcNk9Bv_T2ZjU3nehHV4qUnCW00ECH6jHC2WCjzHYWh1Dc9ChVxipkzp1UqeYVIO6gX650PuY9M6O7L-nkcX43DiXxtB866BsS_8Ay8d5mA</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Kakinuma, Katsuyoshi</creator><general>The Society of Powder Technology, Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20221110</creationdate><title>Particle Design and Evaluation for Electrocatalysts of Polymer Electrolyte Fuel Cells</title><author>Kakinuma, Katsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1236-aba098db341305ddf32602f3c4071c605b4e9d691a1d68e316935dbcf3838c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Cerium oxides</topic><topic>Chemical reduction</topic><topic>Conducting oxide nanoparticles</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemical activity</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Gaseous diffusion</topic><topic>Microstructure</topic><topic>Nanoparticles</topic><topic>Operating temperature</topic><topic>Oxygen reduction reactions</topic><topic>Polymer electrolyte fuel cell</topic><topic>Proton exchange membrane fuel cells</topic><topic>Pt nanoparticles</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakinuma, Katsuyoshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Funtai Kogakkaishi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakinuma, Katsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Design and Evaluation for Electrocatalysts of Polymer Electrolyte Fuel Cells</atitle><jtitle>Funtai Kogakkaishi</jtitle><addtitle>J. Soc. Powder Technol., Japan</addtitle><date>2022-11-10</date><risdate>2022</risdate><volume>59</volume><issue>11</issue><spage>582</spage><epage>588</epage><pages>582-588</pages><artnum>59.582</artnum><issn>0386-6157</issn><eissn>1883-7239</eissn><abstract>In proton exchange membrane fuel cells operating with the use of Pt catalyst supported on carbon (Pt/C) cathode catalysts, severe corrosion of the carbon support has been recognized at high potentials. Highly catalytic durability with high activity is required toward the application of heavy-duty use. One of the alternative candidate catalysts are Pt catalysts supported on non-carbon ceramic supports. Our group invented that Pt catalysts supported on SnO2 and CeO2 without carbon additive. These catalysts were superior in durability (startup/shutdown, load cycling) and oxygen reduction reaction activity to those of commercial Pt/C by evaluation of membrane-electrode assemblies. The non-carbon support of SnO2 nanoparticles has a unique carbon-like microstructure consisting of a fused-aggregate network structure, which enhances the electronically conducting pathways via the aggregated microstructure and gas diffusion pathways via the open pores in the microstructure. The cell performance using the Pt/SnO2 cathode catalyst layers at operating temperatures from 80°C to 120°C is quite promising for the development of high-power density with simultaneous high durability.</abstract><cop>Kyoto</cop><pub>The Society of Powder Technology, Japan</pub><doi>10.4164/sptj.59.582</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0386-6157
ispartof Journal of the Society of Powder Technology, Japan, 2022/11/10, Vol.59(11), pp.582-588
issn 0386-6157
1883-7239
language eng ; jpn
recordid cdi_proquest_journals_2765438836
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Carbon
Catalysts
Cathodes
Cerium oxides
Chemical reduction
Conducting oxide nanoparticles
Durability
Electrocatalysts
Electrochemical activity
Electrolytic cells
Fuel cells
Gaseous diffusion
Microstructure
Nanoparticles
Operating temperature
Oxygen reduction reactions
Polymer electrolyte fuel cell
Proton exchange membrane fuel cells
Pt nanoparticles
Tin dioxide
title Particle Design and Evaluation for Electrocatalysts of Polymer Electrolyte Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Design%20and%20Evaluation%20for%20Electrocatalysts%20of%20Polymer%20Electrolyte%20Fuel%20Cells&rft.jtitle=Funtai%20Kogakkaishi&rft.au=Kakinuma,%20Katsuyoshi&rft.date=2022-11-10&rft.volume=59&rft.issue=11&rft.spage=582&rft.epage=588&rft.pages=582-588&rft.artnum=59.582&rft.issn=0386-6157&rft.eissn=1883-7239&rft_id=info:doi/10.4164/sptj.59.582&rft_dat=%3Cproquest_cross%3E2765438836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765438836&rft_id=info:pmid/&rfr_iscdi=true