Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint

The primal-dual method of Chambolle and Pock is a widely used algorithm to solve various optimization problems written as convex-concave saddle point problems. Each update step involves the application of both the forward linear operator and its adjoint. However, in practical applications like compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2023-04, Vol.87 (2), p.22, Article 22
Hauptverfasser: Lorenz, Dirk A., Schneppe, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22
container_title Applied mathematics & optimization
container_volume 87
creator Lorenz, Dirk A.
Schneppe, Felix
description The primal-dual method of Chambolle and Pock is a widely used algorithm to solve various optimization problems written as convex-concave saddle point problems. Each update step involves the application of both the forward linear operator and its adjoint. However, in practical applications like computerized tomography, it is often computationally favourable to replace the adjoint operator by a computationally more efficient approximation. This leads to an adjoint mismatch in the algorithm. In this paper, we analyze the convergence of Chambolle–Pock’s primal-dual method under the presence of a mismatched adjoint in the strongly convex setting. We present an upper bound on the error of the primal solution and derive stepsizes and mild conditions under which convergence to a fixed point is still guaranteed. Furthermore we show linear convergence similar to the result of Chambolle–Pock’s primal-dual method without the adjoint mismatch. Moreover, we illustrate our results both for an academic and a real-world inspired application.
doi_str_mv 10.1007/s00245-022-09933-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765218106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765218106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9a6c61599924becc692325cdabaf40aff87b603fdc4d3f5bcc431441c8bc1c2e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GrAdfTmt81KSrUqtNiFrkMmkzhTp02dTBF3fQdXvl6fxNQR3Lm6XDjnu9wPoXMClwRgcBUBKBcYKMWgFGNYHKAe4SytEuQh6gEogbkk8hidxLiAxDPJeuh6XJplHura7baf82Bfd9uvmM2bamlqfLMxdTZzbRmK7L1qy2xWxaVpbemKbFQsQrVqT9GRN3V0Z7-zj54nt0_jezx9vHsYj6bYMsJbrIy0kgilFOW5s1YqyqiwhcmN52C8Hw5yCcwXlhfMi9xanjxO7DC3xFLH-uiiy1034W3jYqsXYdOs0klNB1JQMiQgE0U7yjYhxsZ5vd5_0nxoAnpflO6K0qko_VOUFklinRQTvHpxzV_0P9Y3Y0psvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765218106</pqid></control><display><type>article</type><title>Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Lorenz, Dirk A. ; Schneppe, Felix</creator><creatorcontrib>Lorenz, Dirk A. ; Schneppe, Felix</creatorcontrib><description>The primal-dual method of Chambolle and Pock is a widely used algorithm to solve various optimization problems written as convex-concave saddle point problems. Each update step involves the application of both the forward linear operator and its adjoint. However, in practical applications like computerized tomography, it is often computationally favourable to replace the adjoint operator by a computationally more efficient approximation. This leads to an adjoint mismatch in the algorithm. In this paper, we analyze the convergence of Chambolle–Pock’s primal-dual method under the presence of a mismatched adjoint in the strongly convex setting. We present an upper bound on the error of the primal solution and derive stepsizes and mild conditions under which convergence to a fixed point is still guaranteed. Furthermore we show linear convergence similar to the result of Chambolle–Pock’s primal-dual method without the adjoint mismatch. Moreover, we illustrate our results both for an academic and a real-world inspired application.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-022-09933-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applied mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computed tomography ; Control ; Convergence ; Hilbert space ; Inverse problems ; Linear operators ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Optimization ; Saddle points ; Simulation ; Systems Theory ; Theoretical ; Tomography ; Upper bounds</subject><ispartof>Applied mathematics &amp; optimization, 2023-04, Vol.87 (2), p.22, Article 22</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-9a6c61599924becc692325cdabaf40aff87b603fdc4d3f5bcc431441c8bc1c2e3</cites><orcidid>0000-0002-7419-769X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-022-09933-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-022-09933-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lorenz, Dirk A.</creatorcontrib><creatorcontrib>Schneppe, Felix</creatorcontrib><title>Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>The primal-dual method of Chambolle and Pock is a widely used algorithm to solve various optimization problems written as convex-concave saddle point problems. Each update step involves the application of both the forward linear operator and its adjoint. However, in practical applications like computerized tomography, it is often computationally favourable to replace the adjoint operator by a computationally more efficient approximation. This leads to an adjoint mismatch in the algorithm. In this paper, we analyze the convergence of Chambolle–Pock’s primal-dual method under the presence of a mismatched adjoint in the strongly convex setting. We present an upper bound on the error of the primal solution and derive stepsizes and mild conditions under which convergence to a fixed point is still guaranteed. Furthermore we show linear convergence similar to the result of Chambolle–Pock’s primal-dual method without the adjoint mismatch. Moreover, we illustrate our results both for an academic and a real-world inspired application.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computed tomography</subject><subject>Control</subject><subject>Convergence</subject><subject>Hilbert space</subject><subject>Inverse problems</subject><subject>Linear operators</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Saddle points</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Tomography</subject><subject>Upper bounds</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4GrAdfTmt81KSrUqtNiFrkMmkzhTp02dTBF3fQdXvl6fxNQR3Lm6XDjnu9wPoXMClwRgcBUBKBcYKMWgFGNYHKAe4SytEuQh6gEogbkk8hidxLiAxDPJeuh6XJplHura7baf82Bfd9uvmM2bamlqfLMxdTZzbRmK7L1qy2xWxaVpbemKbFQsQrVqT9GRN3V0Z7-zj54nt0_jezx9vHsYj6bYMsJbrIy0kgilFOW5s1YqyqiwhcmN52C8Hw5yCcwXlhfMi9xanjxO7DC3xFLH-uiiy1034W3jYqsXYdOs0klNB1JQMiQgE0U7yjYhxsZ5vd5_0nxoAnpflO6K0qko_VOUFklinRQTvHpxzV_0P9Y3Y0psvQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Lorenz, Dirk A.</creator><creator>Schneppe, Felix</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7419-769X</orcidid></search><sort><creationdate>20230401</creationdate><title>Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint</title><author>Lorenz, Dirk A. ; Schneppe, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9a6c61599924becc692325cdabaf40aff87b603fdc4d3f5bcc431441c8bc1c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computed tomography</topic><topic>Control</topic><topic>Convergence</topic><topic>Hilbert space</topic><topic>Inverse problems</topic><topic>Linear operators</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Saddle points</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Tomography</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, Dirk A.</creatorcontrib><creatorcontrib>Schneppe, Felix</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, Dirk A.</au><au>Schneppe, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>87</volume><issue>2</issue><spage>22</spage><pages>22-</pages><artnum>22</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>The primal-dual method of Chambolle and Pock is a widely used algorithm to solve various optimization problems written as convex-concave saddle point problems. Each update step involves the application of both the forward linear operator and its adjoint. However, in practical applications like computerized tomography, it is often computationally favourable to replace the adjoint operator by a computationally more efficient approximation. This leads to an adjoint mismatch in the algorithm. In this paper, we analyze the convergence of Chambolle–Pock’s primal-dual method under the presence of a mismatched adjoint in the strongly convex setting. We present an upper bound on the error of the primal solution and derive stepsizes and mild conditions under which convergence to a fixed point is still guaranteed. Furthermore we show linear convergence similar to the result of Chambolle–Pock’s primal-dual method without the adjoint mismatch. Moreover, we illustrate our results both for an academic and a real-world inspired application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-022-09933-5</doi><orcidid>https://orcid.org/0000-0002-7419-769X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2023-04, Vol.87 (2), p.22, Article 22
issn 0095-4616
1432-0606
language eng
recordid cdi_proquest_journals_2765218106
source SpringerLink Journals; Business Source Complete
subjects Algorithms
Applied mathematics
Calculus of Variations and Optimal Control
Optimization
Computed tomography
Control
Convergence
Hilbert space
Inverse problems
Linear operators
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Optimization
Saddle points
Simulation
Systems Theory
Theoretical
Tomography
Upper bounds
title Chambolle–Pock’s Primal-Dual Method with Mismatched Adjoint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chambolle%E2%80%93Pock%E2%80%99s%20Primal-Dual%20Method%20with%20Mismatched%20Adjoint&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Lorenz,%20Dirk%20A.&rft.date=2023-04-01&rft.volume=87&rft.issue=2&rft.spage=22&rft.pages=22-&rft.artnum=22&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-022-09933-5&rft_dat=%3Cproquest_cross%3E2765218106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765218106&rft_id=info:pmid/&rfr_iscdi=true