Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study

Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-02, Vol.124 (7-8), p.2401-2421
Hauptverfasser: Haoues, Sabrina, Yallese, Mohamed Athmane, Belhadi, Salim, Chihaoui, Salim, Uysal, Alper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2421
container_issue 7-8
container_start_page 2401
container_title International journal of advanced manufacturing technology
container_volume 124
creator Haoues, Sabrina
Yallese, Mohamed Athmane
Belhadi, Salim
Chihaoui, Salim
Uysal, Alper
description Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3 3 ) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.
doi_str_mv 10.1007/s00170-022-10583-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765216180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765216180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFVABAWjubRp6q4OXgYcFC_rkElTjU6bMUkFfRCf13RGcOcqhP_7z-F8AOwRfEIwLk4DxqTACFOKCM4FQ2INjEjGGGKY5OtghCkXiBVcbIKtEF4TzgkXI_A9dbWZ2-4Zqq6GbhFta79UtK6DtoOx992QuQbeVZyjq0uGD5bk8IV9GMK2n0eLtLfReKtgbbQNqY9a9TbEh3cPk2M4rc6r8fGyOq0m9-PqCLYmvrg6nEEFtWsXyqe1HwaG2NefO2CjUfNgdn_fbfB0efE4vkY3t1eTcXWDNC1ZRDxrqKGNFqUgRDNezJQQhaixbjTTejajwszyLFMZKzXLWZkxmlPKjakJrsucbYP91dyFd--9CVG-unRzWilpwXOaLAmcKLqitHcheNPIhbet8p-SYDn4lyv_MvmXS_9SpBJblUKCu2fj_0b_0_oBhmeF7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765216180</pqid></control><display><type>article</type><title>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</title><source>SpringerLink Journals</source><creator>Haoues, Sabrina ; Yallese, Mohamed Athmane ; Belhadi, Salim ; Chihaoui, Salim ; Uysal, Alper</creator><creatorcontrib>Haoues, Sabrina ; Yallese, Mohamed Athmane ; Belhadi, Salim ; Chihaoui, Salim ; Uysal, Alper</creatorcontrib><description>Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3 3 ) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10583-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; CAE) and Design ; Comparative studies ; Computer-Aided Engineering (CAD ; Cutting tools ; Decision making ; Dry machining ; Engineering ; Geometry ; Industrial and Production Engineering ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Media Management ; Methods ; Modelling ; Multiple criteria decision making ; Multiple criterion ; Multiple objective analysis ; Optimization ; Original Article ; Orthogonal arrays ; Polyamide resins ; Polymers ; Productivity ; Response surface methodology ; Signal to noise ratio ; Turning (machining) ; Variance analysis</subject><ispartof>International journal of advanced manufacturing technology, 2023-02, Vol.124 (7-8), p.2401-2421</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</citedby><cites>FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10583-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10583-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Haoues, Sabrina</creatorcontrib><creatorcontrib>Yallese, Mohamed Athmane</creatorcontrib><creatorcontrib>Belhadi, Salim</creatorcontrib><creatorcontrib>Chihaoui, Salim</creatorcontrib><creatorcontrib>Uysal, Alper</creatorcontrib><title>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3 3 ) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.</description><subject>Advanced manufacturing technologies</subject><subject>CAE) and Design</subject><subject>Comparative studies</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting tools</subject><subject>Decision making</subject><subject>Dry machining</subject><subject>Engineering</subject><subject>Geometry</subject><subject>Industrial and Production Engineering</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Orthogonal arrays</subject><subject>Polyamide resins</subject><subject>Polymers</subject><subject>Productivity</subject><subject>Response surface methodology</subject><subject>Signal to noise ratio</subject><subject>Turning (machining)</subject><subject>Variance analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOF5ewFVABAWjubRp6q4OXgYcFC_rkElTjU6bMUkFfRCf13RGcOcqhP_7z-F8AOwRfEIwLk4DxqTACFOKCM4FQ2INjEjGGGKY5OtghCkXiBVcbIKtEF4TzgkXI_A9dbWZ2-4Zqq6GbhFta79UtK6DtoOx992QuQbeVZyjq0uGD5bk8IV9GMK2n0eLtLfReKtgbbQNqY9a9TbEh3cPk2M4rc6r8fGyOq0m9-PqCLYmvrg6nEEFtWsXyqe1HwaG2NefO2CjUfNgdn_fbfB0efE4vkY3t1eTcXWDNC1ZRDxrqKGNFqUgRDNezJQQhaixbjTTejajwszyLFMZKzXLWZkxmlPKjakJrsucbYP91dyFd--9CVG-unRzWilpwXOaLAmcKLqitHcheNPIhbet8p-SYDn4lyv_MvmXS_9SpBJblUKCu2fj_0b_0_oBhmeF7Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Haoues, Sabrina</creator><creator>Yallese, Mohamed Athmane</creator><creator>Belhadi, Salim</creator><creator>Chihaoui, Salim</creator><creator>Uysal, Alper</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230201</creationdate><title>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</title><author>Haoues, Sabrina ; Yallese, Mohamed Athmane ; Belhadi, Salim ; Chihaoui, Salim ; Uysal, Alper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>CAE) and Design</topic><topic>Comparative studies</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting tools</topic><topic>Decision making</topic><topic>Dry machining</topic><topic>Engineering</topic><topic>Geometry</topic><topic>Industrial and Production Engineering</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Orthogonal arrays</topic><topic>Polyamide resins</topic><topic>Polymers</topic><topic>Productivity</topic><topic>Response surface methodology</topic><topic>Signal to noise ratio</topic><topic>Turning (machining)</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haoues, Sabrina</creatorcontrib><creatorcontrib>Yallese, Mohamed Athmane</creatorcontrib><creatorcontrib>Belhadi, Salim</creatorcontrib><creatorcontrib>Chihaoui, Salim</creatorcontrib><creatorcontrib>Uysal, Alper</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haoues, Sabrina</au><au>Yallese, Mohamed Athmane</au><au>Belhadi, Salim</au><au>Chihaoui, Salim</au><au>Uysal, Alper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>124</volume><issue>7-8</issue><spage>2401</spage><epage>2421</epage><pages>2401-2421</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3 3 ) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10583-8</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-02, Vol.124 (7-8), p.2401-2421
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2765216180
source SpringerLink Journals
subjects Advanced manufacturing technologies
CAE) and Design
Comparative studies
Computer-Aided Engineering (CAD
Cutting tools
Decision making
Dry machining
Engineering
Geometry
Industrial and Production Engineering
Manufacturing
Mechanical Engineering
Mechanical properties
Media Management
Methods
Modelling
Multiple criteria decision making
Multiple criterion
Multiple objective analysis
Optimization
Original Article
Orthogonal arrays
Polyamide resins
Polymers
Productivity
Response surface methodology
Signal to noise ratio
Turning (machining)
Variance analysis
title Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20optimization%20in%20turning%20of%20PA66-GF30%25%20and%20PA66%20using%20multi-criteria%20decision-making%20(PSI,%20MABAC,%20and%20MAIRCA)%20methods:%20a%20comparative%20study&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Haoues,%20Sabrina&rft.date=2023-02-01&rft.volume=124&rft.issue=7-8&rft.spage=2401&rft.epage=2421&rft.pages=2401-2421&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10583-8&rft_dat=%3Cproquest_cross%3E2765216180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765216180&rft_id=info:pmid/&rfr_iscdi=true