Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study
Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2023-02, Vol.124 (7-8), p.2401-2421 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2421 |
---|---|
container_issue | 7-8 |
container_start_page | 2401 |
container_title | International journal of advanced manufacturing technology |
container_volume | 124 |
creator | Haoues, Sabrina Yallese, Mohamed Athmane Belhadi, Salim Chihaoui, Salim Uysal, Alper |
description | Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3
3
) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement. |
doi_str_mv | 10.1007/s00170-022-10583-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765216180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765216180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF5ewFVABAWjubRp6q4OXgYcFC_rkElTjU6bMUkFfRCf13RGcOcqhP_7z-F8AOwRfEIwLk4DxqTACFOKCM4FQ2INjEjGGGKY5OtghCkXiBVcbIKtEF4TzgkXI_A9dbWZ2-4Zqq6GbhFta79UtK6DtoOx992QuQbeVZyjq0uGD5bk8IV9GMK2n0eLtLfReKtgbbQNqY9a9TbEh3cPk2M4rc6r8fGyOq0m9-PqCLYmvrg6nEEFtWsXyqe1HwaG2NefO2CjUfNgdn_fbfB0efE4vkY3t1eTcXWDNC1ZRDxrqKGNFqUgRDNezJQQhaixbjTTejajwszyLFMZKzXLWZkxmlPKjakJrsucbYP91dyFd--9CVG-unRzWilpwXOaLAmcKLqitHcheNPIhbet8p-SYDn4lyv_MvmXS_9SpBJblUKCu2fj_0b_0_oBhmeF7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765216180</pqid></control><display><type>article</type><title>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</title><source>SpringerLink Journals</source><creator>Haoues, Sabrina ; Yallese, Mohamed Athmane ; Belhadi, Salim ; Chihaoui, Salim ; Uysal, Alper</creator><creatorcontrib>Haoues, Sabrina ; Yallese, Mohamed Athmane ; Belhadi, Salim ; Chihaoui, Salim ; Uysal, Alper</creatorcontrib><description>Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3
3
) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10583-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; CAE) and Design ; Comparative studies ; Computer-Aided Engineering (CAD ; Cutting tools ; Decision making ; Dry machining ; Engineering ; Geometry ; Industrial and Production Engineering ; Manufacturing ; Mechanical Engineering ; Mechanical properties ; Media Management ; Methods ; Modelling ; Multiple criteria decision making ; Multiple criterion ; Multiple objective analysis ; Optimization ; Original Article ; Orthogonal arrays ; Polyamide resins ; Polymers ; Productivity ; Response surface methodology ; Signal to noise ratio ; Turning (machining) ; Variance analysis</subject><ispartof>International journal of advanced manufacturing technology, 2023-02, Vol.124 (7-8), p.2401-2421</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</citedby><cites>FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10583-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10583-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Haoues, Sabrina</creatorcontrib><creatorcontrib>Yallese, Mohamed Athmane</creatorcontrib><creatorcontrib>Belhadi, Salim</creatorcontrib><creatorcontrib>Chihaoui, Salim</creatorcontrib><creatorcontrib>Uysal, Alper</creatorcontrib><title>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3
3
) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.</description><subject>Advanced manufacturing technologies</subject><subject>CAE) and Design</subject><subject>Comparative studies</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting tools</subject><subject>Decision making</subject><subject>Dry machining</subject><subject>Engineering</subject><subject>Geometry</subject><subject>Industrial and Production Engineering</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Orthogonal arrays</subject><subject>Polyamide resins</subject><subject>Polymers</subject><subject>Productivity</subject><subject>Response surface methodology</subject><subject>Signal to noise ratio</subject><subject>Turning (machining)</subject><subject>Variance analysis</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKxDAUhoMoOF5ewFVABAWjubRp6q4OXgYcFC_rkElTjU6bMUkFfRCf13RGcOcqhP_7z-F8AOwRfEIwLk4DxqTACFOKCM4FQ2INjEjGGGKY5OtghCkXiBVcbIKtEF4TzgkXI_A9dbWZ2-4Zqq6GbhFta79UtK6DtoOx992QuQbeVZyjq0uGD5bk8IV9GMK2n0eLtLfReKtgbbQNqY9a9TbEh3cPk2M4rc6r8fGyOq0m9-PqCLYmvrg6nEEFtWsXyqe1HwaG2NefO2CjUfNgdn_fbfB0efE4vkY3t1eTcXWDNC1ZRDxrqKGNFqUgRDNezJQQhaixbjTTejajwszyLFMZKzXLWZkxmlPKjakJrsucbYP91dyFd--9CVG-unRzWilpwXOaLAmcKLqitHcheNPIhbet8p-SYDn4lyv_MvmXS_9SpBJblUKCu2fj_0b_0_oBhmeF7Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Haoues, Sabrina</creator><creator>Yallese, Mohamed Athmane</creator><creator>Belhadi, Salim</creator><creator>Chihaoui, Salim</creator><creator>Uysal, Alper</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230201</creationdate><title>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</title><author>Haoues, Sabrina ; Yallese, Mohamed Athmane ; Belhadi, Salim ; Chihaoui, Salim ; Uysal, Alper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-64f2e2fc89811c367ba8878d0cfc3ccbb28eb544a439c35394325226eed10d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advanced manufacturing technologies</topic><topic>CAE) and Design</topic><topic>Comparative studies</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting tools</topic><topic>Decision making</topic><topic>Dry machining</topic><topic>Engineering</topic><topic>Geometry</topic><topic>Industrial and Production Engineering</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Orthogonal arrays</topic><topic>Polyamide resins</topic><topic>Polymers</topic><topic>Productivity</topic><topic>Response surface methodology</topic><topic>Signal to noise ratio</topic><topic>Turning (machining)</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haoues, Sabrina</creatorcontrib><creatorcontrib>Yallese, Mohamed Athmane</creatorcontrib><creatorcontrib>Belhadi, Salim</creatorcontrib><creatorcontrib>Chihaoui, Salim</creatorcontrib><creatorcontrib>Uysal, Alper</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haoues, Sabrina</au><au>Yallese, Mohamed Athmane</au><au>Belhadi, Salim</au><au>Chihaoui, Salim</au><au>Uysal, Alper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>124</volume><issue>7-8</issue><spage>2401</spage><epage>2421</epage><pages>2401-2421</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Semi-crystalline polymers are widely used in modern industry. Indeed, they are highly demanded because of their excellent compromise between advantageous mechanical properties, high lightness, good productivity, and low cost. In this work, a modeling study of performance parameters such as (Ra), (Fz), (Pc), and (MRR) was carried out using the response surface methodology (RSM). Dry machining operations were performed on two polyamides (PA66-GF30% and PA66) following the L9 (3
3
) orthogonal array. The results were used to perform a mono-objective optimization based on the Taguchi signal-to-noise ratio (S/N). In addition, a comparative study between three multi-objective optimization methods MCDM (PSI, MABAC, and MAIRCA) coupled with the Taguchi approach was realized. The target objective is to reduce (Ra, Fz, and Pc) and maximize (MRR) simultaneously. The results found are original and can help researchers working in the field of machining polyamides with and without reinforcement.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10583-8</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2023-02, Vol.124 (7-8), p.2401-2421 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2765216180 |
source | SpringerLink Journals |
subjects | Advanced manufacturing technologies CAE) and Design Comparative studies Computer-Aided Engineering (CAD Cutting tools Decision making Dry machining Engineering Geometry Industrial and Production Engineering Manufacturing Mechanical Engineering Mechanical properties Media Management Methods Modelling Multiple criteria decision making Multiple criterion Multiple objective analysis Optimization Original Article Orthogonal arrays Polyamide resins Polymers Productivity Response surface methodology Signal to noise ratio Turning (machining) Variance analysis |
title | Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: a comparative study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20optimization%20in%20turning%20of%20PA66-GF30%25%20and%20PA66%20using%20multi-criteria%20decision-making%20(PSI,%20MABAC,%20and%20MAIRCA)%20methods:%20a%20comparative%20study&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Haoues,%20Sabrina&rft.date=2023-02-01&rft.volume=124&rft.issue=7-8&rft.spage=2401&rft.epage=2421&rft.pages=2401-2421&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10583-8&rft_dat=%3Cproquest_cross%3E2765216180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765216180&rft_id=info:pmid/&rfr_iscdi=true |