The location of adsorbed water in pigmented epoxy-amine coatings
Pigmentation can exacerbate problematic water uptake into protective paints, leading to detrimental effects such delamination, swelling and plasticization. Potential underlying mechanisms include poor adhesion between the pigment and binder, the formation of hygroscopic interphase regions close to t...
Gespeichert in:
Veröffentlicht in: | Progress in organic coatings 2022-12, Vol.173, p.107223, Article 107223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107223 |
container_title | Progress in organic coatings |
container_volume | 173 |
creator | Morsch, Suzanne Emad, Seyedgholamreza Lyon, Stuart B. Gibbon, Simon R. Irwin, Mark |
description | Pigmentation can exacerbate problematic water uptake into protective paints, leading to detrimental effects such delamination, swelling and plasticization. Potential underlying mechanisms include poor adhesion between the pigment and binder, the formation of hygroscopic interphase regions close to the pigment particles, and internal stress. Here, we demonstrate the use of nanoscale chemical mapping using AFM-IR and nanothermal analysis to investigate the contribution of these mechanisms directly for model coatings based on diglycidyl ether of bisphenol-A (DGEBA) cross-linked with triethylenetetramine (TETA). Whilst moisture uptake increases in the presence of a microscale silica matting agent, no chemical interphase could be detected close to the wax-coated particles. Instead, nanothermal analysis reveals attenuated thermal expansion of the polymeric binder and raised Tg values, supporting favourable polymer-pigment interaction and an increase in internal stress in the polymeric network. This is confirmed by mapping water distributions directly using AFM-IR, where no accumulation at the intact pigment-polymer interface/interphase is detected. Finally, further evidence is provided by bulk thermal analysis, where increased plasticization and desorption enthalpies demonstrate that water sorption into the bulk polymer binder increases as a function of added pigment volume concentrations.
[Display omitted]
•Pigmentation of an epoxy-amine binder increases long-term water uptake.•AFM-IR mapping shows no water accumulates at polymer-silica pigment interfaces.•Increased water uptake into the binder is demonstrated using DSC.•Nanothermal analysis supports an internal stress driven mechanism. |
doi_str_mv | 10.1016/j.porgcoat.2022.107223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765099801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300944022005203</els_id><sourcerecordid>2765099801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-4f211a0217762b5396a927d8e016320949ffdd2cbaa0a2541b4b1b4489e07ba73</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4FKfjceZN0TfM2GX7BwJcJvoU0vZ0pW1OTTN2_N6P67MPlwuF8cA4h1xRmFGh5280G5zfG6ThjwFgCBWP8hExoJXjOOX07JRPgALksCjgnFyF0AFByLidksX7HbOuMjtb1mWsz3QTna2yyLx3RZ7bPBrvZYR8ThIP7PuR6Z3vMjnm234RLctbqbcCr3z8lrw_36-VTvnp5fF7erXLDaRXzomWUamBUiJLVcy5LLZloKkwNOANZyLZtGmZqrUGzeUHrok5XVBJB1FrwKbkZfQfvPvYYourc3vcpUjFRzkHKCmhilSPLeBeCx1YN3u60PygK6riW6tTfWuq4lhrXSsLFKMTU4dOiV8FY7A021qOJqnH2P4sfKh91aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765099801</pqid></control><display><type>article</type><title>The location of adsorbed water in pigmented epoxy-amine coatings</title><source>Elsevier ScienceDirect Journals</source><creator>Morsch, Suzanne ; Emad, Seyedgholamreza ; Lyon, Stuart B. ; Gibbon, Simon R. ; Irwin, Mark</creator><creatorcontrib>Morsch, Suzanne ; Emad, Seyedgholamreza ; Lyon, Stuart B. ; Gibbon, Simon R. ; Irwin, Mark</creatorcontrib><description>Pigmentation can exacerbate problematic water uptake into protective paints, leading to detrimental effects such delamination, swelling and plasticization. Potential underlying mechanisms include poor adhesion between the pigment and binder, the formation of hygroscopic interphase regions close to the pigment particles, and internal stress. Here, we demonstrate the use of nanoscale chemical mapping using AFM-IR and nanothermal analysis to investigate the contribution of these mechanisms directly for model coatings based on diglycidyl ether of bisphenol-A (DGEBA) cross-linked with triethylenetetramine (TETA). Whilst moisture uptake increases in the presence of a microscale silica matting agent, no chemical interphase could be detected close to the wax-coated particles. Instead, nanothermal analysis reveals attenuated thermal expansion of the polymeric binder and raised Tg values, supporting favourable polymer-pigment interaction and an increase in internal stress in the polymeric network. This is confirmed by mapping water distributions directly using AFM-IR, where no accumulation at the intact pigment-polymer interface/interphase is detected. Finally, further evidence is provided by bulk thermal analysis, where increased plasticization and desorption enthalpies demonstrate that water sorption into the bulk polymer binder increases as a function of added pigment volume concentrations.
[Display omitted]
•Pigmentation of an epoxy-amine binder increases long-term water uptake.•AFM-IR mapping shows no water accumulates at polymer-silica pigment interfaces.•Increased water uptake into the binder is demonstrated using DSC.•Nanothermal analysis supports an internal stress driven mechanism.</description><identifier>ISSN: 0300-9440</identifier><identifier>EISSN: 1873-331X</identifier><identifier>DOI: 10.1016/j.porgcoat.2022.107223</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesives ; AFM-IR ; Bisphenol A ; Coated particles ; Coatings ; Enthalpy ; Epoxy-amine ; Mapping ; Moisture effects ; Paints ; Polymers ; Protective coatings ; Residual stress ; Stress ; Thermal analysis ; Thermal expansion ; Water uptake</subject><ispartof>Progress in organic coatings, 2022-12, Vol.173, p.107223, Article 107223</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Dec 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-4f211a0217762b5396a927d8e016320949ffdd2cbaa0a2541b4b1b4489e07ba73</citedby><cites>FETCH-LOGICAL-c318t-4f211a0217762b5396a927d8e016320949ffdd2cbaa0a2541b4b1b4489e07ba73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0300944022005203$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Morsch, Suzanne</creatorcontrib><creatorcontrib>Emad, Seyedgholamreza</creatorcontrib><creatorcontrib>Lyon, Stuart B.</creatorcontrib><creatorcontrib>Gibbon, Simon R.</creatorcontrib><creatorcontrib>Irwin, Mark</creatorcontrib><title>The location of adsorbed water in pigmented epoxy-amine coatings</title><title>Progress in organic coatings</title><description>Pigmentation can exacerbate problematic water uptake into protective paints, leading to detrimental effects such delamination, swelling and plasticization. Potential underlying mechanisms include poor adhesion between the pigment and binder, the formation of hygroscopic interphase regions close to the pigment particles, and internal stress. Here, we demonstrate the use of nanoscale chemical mapping using AFM-IR and nanothermal analysis to investigate the contribution of these mechanisms directly for model coatings based on diglycidyl ether of bisphenol-A (DGEBA) cross-linked with triethylenetetramine (TETA). Whilst moisture uptake increases in the presence of a microscale silica matting agent, no chemical interphase could be detected close to the wax-coated particles. Instead, nanothermal analysis reveals attenuated thermal expansion of the polymeric binder and raised Tg values, supporting favourable polymer-pigment interaction and an increase in internal stress in the polymeric network. This is confirmed by mapping water distributions directly using AFM-IR, where no accumulation at the intact pigment-polymer interface/interphase is detected. Finally, further evidence is provided by bulk thermal analysis, where increased plasticization and desorption enthalpies demonstrate that water sorption into the bulk polymer binder increases as a function of added pigment volume concentrations.
[Display omitted]
•Pigmentation of an epoxy-amine binder increases long-term water uptake.•AFM-IR mapping shows no water accumulates at polymer-silica pigment interfaces.•Increased water uptake into the binder is demonstrated using DSC.•Nanothermal analysis supports an internal stress driven mechanism.</description><subject>Adhesives</subject><subject>AFM-IR</subject><subject>Bisphenol A</subject><subject>Coated particles</subject><subject>Coatings</subject><subject>Enthalpy</subject><subject>Epoxy-amine</subject><subject>Mapping</subject><subject>Moisture effects</subject><subject>Paints</subject><subject>Polymers</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Stress</subject><subject>Thermal analysis</subject><subject>Thermal expansion</subject><subject>Water uptake</subject><issn>0300-9440</issn><issn>1873-331X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4FKfjceZN0TfM2GX7BwJcJvoU0vZ0pW1OTTN2_N6P67MPlwuF8cA4h1xRmFGh5280G5zfG6ThjwFgCBWP8hExoJXjOOX07JRPgALksCjgnFyF0AFByLidksX7HbOuMjtb1mWsz3QTna2yyLx3RZ7bPBrvZYR8ThIP7PuR6Z3vMjnm234RLctbqbcCr3z8lrw_36-VTvnp5fF7erXLDaRXzomWUamBUiJLVcy5LLZloKkwNOANZyLZtGmZqrUGzeUHrok5XVBJB1FrwKbkZfQfvPvYYourc3vcpUjFRzkHKCmhilSPLeBeCx1YN3u60PygK6riW6tTfWuq4lhrXSsLFKMTU4dOiV8FY7A021qOJqnH2P4sfKh91aQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Morsch, Suzanne</creator><creator>Emad, Seyedgholamreza</creator><creator>Lyon, Stuart B.</creator><creator>Gibbon, Simon R.</creator><creator>Irwin, Mark</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202212</creationdate><title>The location of adsorbed water in pigmented epoxy-amine coatings</title><author>Morsch, Suzanne ; Emad, Seyedgholamreza ; Lyon, Stuart B. ; Gibbon, Simon R. ; Irwin, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-4f211a0217762b5396a927d8e016320949ffdd2cbaa0a2541b4b1b4489e07ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesives</topic><topic>AFM-IR</topic><topic>Bisphenol A</topic><topic>Coated particles</topic><topic>Coatings</topic><topic>Enthalpy</topic><topic>Epoxy-amine</topic><topic>Mapping</topic><topic>Moisture effects</topic><topic>Paints</topic><topic>Polymers</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Stress</topic><topic>Thermal analysis</topic><topic>Thermal expansion</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morsch, Suzanne</creatorcontrib><creatorcontrib>Emad, Seyedgholamreza</creatorcontrib><creatorcontrib>Lyon, Stuart B.</creatorcontrib><creatorcontrib>Gibbon, Simon R.</creatorcontrib><creatorcontrib>Irwin, Mark</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Progress in organic coatings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morsch, Suzanne</au><au>Emad, Seyedgholamreza</au><au>Lyon, Stuart B.</au><au>Gibbon, Simon R.</au><au>Irwin, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The location of adsorbed water in pigmented epoxy-amine coatings</atitle><jtitle>Progress in organic coatings</jtitle><date>2022-12</date><risdate>2022</risdate><volume>173</volume><spage>107223</spage><pages>107223-</pages><artnum>107223</artnum><issn>0300-9440</issn><eissn>1873-331X</eissn><abstract>Pigmentation can exacerbate problematic water uptake into protective paints, leading to detrimental effects such delamination, swelling and plasticization. Potential underlying mechanisms include poor adhesion between the pigment and binder, the formation of hygroscopic interphase regions close to the pigment particles, and internal stress. Here, we demonstrate the use of nanoscale chemical mapping using AFM-IR and nanothermal analysis to investigate the contribution of these mechanisms directly for model coatings based on diglycidyl ether of bisphenol-A (DGEBA) cross-linked with triethylenetetramine (TETA). Whilst moisture uptake increases in the presence of a microscale silica matting agent, no chemical interphase could be detected close to the wax-coated particles. Instead, nanothermal analysis reveals attenuated thermal expansion of the polymeric binder and raised Tg values, supporting favourable polymer-pigment interaction and an increase in internal stress in the polymeric network. This is confirmed by mapping water distributions directly using AFM-IR, where no accumulation at the intact pigment-polymer interface/interphase is detected. Finally, further evidence is provided by bulk thermal analysis, where increased plasticization and desorption enthalpies demonstrate that water sorption into the bulk polymer binder increases as a function of added pigment volume concentrations.
[Display omitted]
•Pigmentation of an epoxy-amine binder increases long-term water uptake.•AFM-IR mapping shows no water accumulates at polymer-silica pigment interfaces.•Increased water uptake into the binder is demonstrated using DSC.•Nanothermal analysis supports an internal stress driven mechanism.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.porgcoat.2022.107223</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-9440 |
ispartof | Progress in organic coatings, 2022-12, Vol.173, p.107223, Article 107223 |
issn | 0300-9440 1873-331X |
language | eng |
recordid | cdi_proquest_journals_2765099801 |
source | Elsevier ScienceDirect Journals |
subjects | Adhesives AFM-IR Bisphenol A Coated particles Coatings Enthalpy Epoxy-amine Mapping Moisture effects Paints Polymers Protective coatings Residual stress Stress Thermal analysis Thermal expansion Water uptake |
title | The location of adsorbed water in pigmented epoxy-amine coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20location%20of%20adsorbed%20water%20in%20pigmented%20epoxy-amine%20coatings&rft.jtitle=Progress%20in%20organic%20coatings&rft.au=Morsch,%20Suzanne&rft.date=2022-12&rft.volume=173&rft.spage=107223&rft.pages=107223-&rft.artnum=107223&rft.issn=0300-9440&rft.eissn=1873-331X&rft_id=info:doi/10.1016/j.porgcoat.2022.107223&rft_dat=%3Cproquest_cross%3E2765099801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765099801&rft_id=info:pmid/&rft_els_id=S0300944022005203&rfr_iscdi=true |