Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass

This paper describes the experimental results of the thermal decomposition of the digestate obtained as a result of anaerobic digestion of dairy manure and dry biomass of Amaranthus retroflexus L. The high yield of Amaranth green mass in the main soil and climate zones of Russia is its advantage ove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomass conversion and biorefinery 2023-01, Vol.13 (2), p.685-695
Hauptverfasser: Karaeva, Julia V., Timofeeva, Svetlana S., Bashkirov, Vladimir N., Bulygina, Kseny S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 695
container_issue 2
container_start_page 685
container_title Biomass conversion and biorefinery
container_volume 13
creator Karaeva, Julia V.
Timofeeva, Svetlana S.
Bashkirov, Vladimir N.
Bulygina, Kseny S.
description This paper describes the experimental results of the thermal decomposition of the digestate obtained as a result of anaerobic digestion of dairy manure and dry biomass of Amaranthus retroflexus L. The high yield of Amaranth green mass in the main soil and climate zones of Russia is its advantage over other crops. The ratio of amaranth stems, amaranth leaves, and dairy manure for volatile solids was equal to 1:5:16. Amaranthus retroflexus L. is a weed; therefore, a thermochemical digestate processing is proposed to avoid the seed integrity. The higher heating value (HHV) of digestate was 18.6 MJ/kg. The HHV of the char residue was 19 MJ/kg. In the inorganic part of the digestate sample, the oxides CaO, SiO 2 , and K 2 O are prevailed. Thermal decomposition of digestate was studied in the temperature range 25–1000 °C in an inert atmosphere using thermogravimetric and differential scanning calorimetry (TG-DSC) at the heating rates of 5, 10, and 20 °C/min. Char residue mass was ranged from 39.8 to 41.08%. Consequently, the rest of the organic matter components pass into the pyrolysis gas and liquid phase. Additionally, studies of the digestate pyrolysis process were carried out in a laboratory setup (in an inert atmosphere) at the heating rate of 10 °C/min and the temperature of 550 °C. As a result, 31% of pyrolysis liquid, 28% of gas, and 41% of char residue were obtained. The HHV of the char residue increased on 4.8% compared with the initial value of digestate. The main components of the pyrolysis liquid are acetic acid (71.44%) and propionic acid (6.12%).
doi_str_mv 10.1007/s13399-020-01138-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765093735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765093735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-353f7325a2688a5c5919bf95065d09669271a48cfb97d0fe37e6a0e0eae74b9f3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EElXpF2CyxBw427Udj6jin1SJpcyW49hpqiQudjrk2-MSBBvT3fB77-49hG4J3BMA-ZAIY0oVQKEAQlhZiAu0oERBIUrKLn93wq_RKqUDAFAmWclggfRu72If7N71rTUdPsZgXUrt0ODgcd02Lo1mdNjH0OOqDY1J-NiZYcQ-RBydnWx3hmvTxgn3ZjhFh81Qn9nepHSDrrzpklv9zCX6eH7abV6L7fvL2-ZxW1hG1FgwzrxklBsqytJwyxVRlVccBK9BCaGoJGZdWl8pWYN3TDphwIEzTq4r5dkS3c2-OcDnKT-tD-EUh3xSUyk4qByYZ4rOlI0hpei8Psa2N3HSBPS5Sz13qXOX-rtLLbKIzaKU4aFx8c_6H9UXdJp3Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765093735</pqid></control><display><type>article</type><title>Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass</title><source>Springer Nature - Complete Springer Journals</source><creator>Karaeva, Julia V. ; Timofeeva, Svetlana S. ; Bashkirov, Vladimir N. ; Bulygina, Kseny S.</creator><creatorcontrib>Karaeva, Julia V. ; Timofeeva, Svetlana S. ; Bashkirov, Vladimir N. ; Bulygina, Kseny S.</creatorcontrib><description>This paper describes the experimental results of the thermal decomposition of the digestate obtained as a result of anaerobic digestion of dairy manure and dry biomass of Amaranthus retroflexus L. The high yield of Amaranth green mass in the main soil and climate zones of Russia is its advantage over other crops. The ratio of amaranth stems, amaranth leaves, and dairy manure for volatile solids was equal to 1:5:16. Amaranthus retroflexus L. is a weed; therefore, a thermochemical digestate processing is proposed to avoid the seed integrity. The higher heating value (HHV) of digestate was 18.6 MJ/kg. The HHV of the char residue was 19 MJ/kg. In the inorganic part of the digestate sample, the oxides CaO, SiO 2 , and K 2 O are prevailed. Thermal decomposition of digestate was studied in the temperature range 25–1000 °C in an inert atmosphere using thermogravimetric and differential scanning calorimetry (TG-DSC) at the heating rates of 5, 10, and 20 °C/min. Char residue mass was ranged from 39.8 to 41.08%. Consequently, the rest of the organic matter components pass into the pyrolysis gas and liquid phase. Additionally, studies of the digestate pyrolysis process were carried out in a laboratory setup (in an inert atmosphere) at the heating rate of 10 °C/min and the temperature of 550 °C. As a result, 31% of pyrolysis liquid, 28% of gas, and 41% of char residue were obtained. The HHV of the char residue increased on 4.8% compared with the initial value of digestate. The main components of the pyrolysis liquid are acetic acid (71.44%) and propionic acid (6.12%).</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-020-01138-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetic acid ; Amaranth ; Anaerobic digestion ; Biogas ; Biomass ; Biotechnology ; Calorific value ; Energy ; Heating rate ; Inert atmospheres ; Liquid phases ; Manures ; Organic matter ; Original Article ; Propionic acid ; Pyrolysis ; Refuse as fuel ; Renewable and Green Energy ; Residues ; Silicon dioxide ; Thermal decomposition</subject><ispartof>Biomass conversion and biorefinery, 2023-01, Vol.13 (2), p.685-695</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-353f7325a2688a5c5919bf95065d09669271a48cfb97d0fe37e6a0e0eae74b9f3</citedby><cites>FETCH-LOGICAL-c319t-353f7325a2688a5c5919bf95065d09669271a48cfb97d0fe37e6a0e0eae74b9f3</cites><orcidid>0000-0002-9275-332X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-020-01138-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-020-01138-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Karaeva, Julia V.</creatorcontrib><creatorcontrib>Timofeeva, Svetlana S.</creatorcontrib><creatorcontrib>Bashkirov, Vladimir N.</creatorcontrib><creatorcontrib>Bulygina, Kseny S.</creatorcontrib><title>Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>This paper describes the experimental results of the thermal decomposition of the digestate obtained as a result of anaerobic digestion of dairy manure and dry biomass of Amaranthus retroflexus L. The high yield of Amaranth green mass in the main soil and climate zones of Russia is its advantage over other crops. The ratio of amaranth stems, amaranth leaves, and dairy manure for volatile solids was equal to 1:5:16. Amaranthus retroflexus L. is a weed; therefore, a thermochemical digestate processing is proposed to avoid the seed integrity. The higher heating value (HHV) of digestate was 18.6 MJ/kg. The HHV of the char residue was 19 MJ/kg. In the inorganic part of the digestate sample, the oxides CaO, SiO 2 , and K 2 O are prevailed. Thermal decomposition of digestate was studied in the temperature range 25–1000 °C in an inert atmosphere using thermogravimetric and differential scanning calorimetry (TG-DSC) at the heating rates of 5, 10, and 20 °C/min. Char residue mass was ranged from 39.8 to 41.08%. Consequently, the rest of the organic matter components pass into the pyrolysis gas and liquid phase. Additionally, studies of the digestate pyrolysis process were carried out in a laboratory setup (in an inert atmosphere) at the heating rate of 10 °C/min and the temperature of 550 °C. As a result, 31% of pyrolysis liquid, 28% of gas, and 41% of char residue were obtained. The HHV of the char residue increased on 4.8% compared with the initial value of digestate. The main components of the pyrolysis liquid are acetic acid (71.44%) and propionic acid (6.12%).</description><subject>Acetic acid</subject><subject>Amaranth</subject><subject>Anaerobic digestion</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Calorific value</subject><subject>Energy</subject><subject>Heating rate</subject><subject>Inert atmospheres</subject><subject>Liquid phases</subject><subject>Manures</subject><subject>Organic matter</subject><subject>Original Article</subject><subject>Propionic acid</subject><subject>Pyrolysis</subject><subject>Refuse as fuel</subject><subject>Renewable and Green Energy</subject><subject>Residues</subject><subject>Silicon dioxide</subject><subject>Thermal decomposition</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EElXpF2CyxBw427Udj6jin1SJpcyW49hpqiQudjrk2-MSBBvT3fB77-49hG4J3BMA-ZAIY0oVQKEAQlhZiAu0oERBIUrKLn93wq_RKqUDAFAmWclggfRu72If7N71rTUdPsZgXUrt0ODgcd02Lo1mdNjH0OOqDY1J-NiZYcQ-RBydnWx3hmvTxgn3ZjhFh81Qn9nepHSDrrzpklv9zCX6eH7abV6L7fvL2-ZxW1hG1FgwzrxklBsqytJwyxVRlVccBK9BCaGoJGZdWl8pWYN3TDphwIEzTq4r5dkS3c2-OcDnKT-tD-EUh3xSUyk4qByYZ4rOlI0hpei8Psa2N3HSBPS5Sz13qXOX-rtLLbKIzaKU4aFx8c_6H9UXdJp3Xw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Karaeva, Julia V.</creator><creator>Timofeeva, Svetlana S.</creator><creator>Bashkirov, Vladimir N.</creator><creator>Bulygina, Kseny S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9275-332X</orcidid></search><sort><creationdate>20230101</creationdate><title>Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass</title><author>Karaeva, Julia V. ; Timofeeva, Svetlana S. ; Bashkirov, Vladimir N. ; Bulygina, Kseny S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-353f7325a2688a5c5919bf95065d09669271a48cfb97d0fe37e6a0e0eae74b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>Amaranth</topic><topic>Anaerobic digestion</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Calorific value</topic><topic>Energy</topic><topic>Heating rate</topic><topic>Inert atmospheres</topic><topic>Liquid phases</topic><topic>Manures</topic><topic>Organic matter</topic><topic>Original Article</topic><topic>Propionic acid</topic><topic>Pyrolysis</topic><topic>Refuse as fuel</topic><topic>Renewable and Green Energy</topic><topic>Residues</topic><topic>Silicon dioxide</topic><topic>Thermal decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Karaeva, Julia V.</creatorcontrib><creatorcontrib>Timofeeva, Svetlana S.</creatorcontrib><creatorcontrib>Bashkirov, Vladimir N.</creatorcontrib><creatorcontrib>Bulygina, Kseny S.</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaeva, Julia V.</au><au>Timofeeva, Svetlana S.</au><au>Bashkirov, Vladimir N.</au><au>Bulygina, Kseny S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>685</spage><epage>695</epage><pages>685-695</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>This paper describes the experimental results of the thermal decomposition of the digestate obtained as a result of anaerobic digestion of dairy manure and dry biomass of Amaranthus retroflexus L. The high yield of Amaranth green mass in the main soil and climate zones of Russia is its advantage over other crops. The ratio of amaranth stems, amaranth leaves, and dairy manure for volatile solids was equal to 1:5:16. Amaranthus retroflexus L. is a weed; therefore, a thermochemical digestate processing is proposed to avoid the seed integrity. The higher heating value (HHV) of digestate was 18.6 MJ/kg. The HHV of the char residue was 19 MJ/kg. In the inorganic part of the digestate sample, the oxides CaO, SiO 2 , and K 2 O are prevailed. Thermal decomposition of digestate was studied in the temperature range 25–1000 °C in an inert atmosphere using thermogravimetric and differential scanning calorimetry (TG-DSC) at the heating rates of 5, 10, and 20 °C/min. Char residue mass was ranged from 39.8 to 41.08%. Consequently, the rest of the organic matter components pass into the pyrolysis gas and liquid phase. Additionally, studies of the digestate pyrolysis process were carried out in a laboratory setup (in an inert atmosphere) at the heating rate of 10 °C/min and the temperature of 550 °C. As a result, 31% of pyrolysis liquid, 28% of gas, and 41% of char residue were obtained. The HHV of the char residue increased on 4.8% compared with the initial value of digestate. The main components of the pyrolysis liquid are acetic acid (71.44%) and propionic acid (6.12%).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-020-01138-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9275-332X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2023-01, Vol.13 (2), p.685-695
issn 2190-6815
2190-6823
language eng
recordid cdi_proquest_journals_2765093735
source Springer Nature - Complete Springer Journals
subjects Acetic acid
Amaranth
Anaerobic digestion
Biogas
Biomass
Biotechnology
Calorific value
Energy
Heating rate
Inert atmospheres
Liquid phases
Manures
Organic matter
Original Article
Propionic acid
Pyrolysis
Refuse as fuel
Renewable and Green Energy
Residues
Silicon dioxide
Thermal decomposition
title Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemical%20processing%20of%20digestate%20from%20biogas%20plant%20for%20recycling%20dairy%20manure%20and%20biomass&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Karaeva,%20Julia%20V.&rft.date=2023-01-01&rft.volume=13&rft.issue=2&rft.spage=685&rft.epage=695&rft.pages=685-695&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-020-01138-6&rft_dat=%3Cproquest_cross%3E2765093735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765093735&rft_id=info:pmid/&rfr_iscdi=true