Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters
The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electroni...
Gespeichert in:
Veröffentlicht in: | Ecohydrology 2023-01, Vol.16 (1), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Ecohydrology |
container_volume | 16 |
creator | Clark, Jason A. Tape, Ken D. Young‐Robertson, Jessica M. |
description | The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils. |
doi_str_mv | 10.1002/eco.2484 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765008352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765008352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgR1jw4mVr_u5uj6XUKhSKUM9hmiYlpbtZk2xlv71pV7x5moH3ezOPh9AjwROCMX3Ryk0or_gVGpEpK3IspvT6b6_4LboL4YBxQbhgI_T50UETrelts8_0CVoXPTShtR6idU1mvKuznattk7Bs5lW0KjvpvY6DHvtWh6wLZ_uxD7bWUftwj24MHIN--J1jtHldbOZv-Wq9fJ_PVrmilPFcpJyGUVUJ2BqijCp22502JYABgUlVCCCl4ZewSYRtSc20AFPysmKKsTF6Gs623n11OkR5cJ1v0kdJy0JgXDFBE_U8UMq7ELw2svW2Bt9LguW5M5k6k-fOEpoP6Lc96v5fTi7m6wv_AwrXb0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765008352</pqid></control><display><type>article</type><title>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Clark, Jason A. ; Tape, Ken D. ; Young‐Robertson, Jessica M.</creator><creatorcontrib>Clark, Jason A. ; Tape, Ken D. ; Young‐Robertson, Jessica M.</creatorcontrib><description>The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.</description><identifier>ISSN: 1936-0584</identifier><identifier>EISSN: 1936-0592</identifier><identifier>DOI: 10.1002/eco.2484</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aquatic plants ; Arctic ; Bryophyta ; Efflux ; Evaporation ; Evaporation rate ; Evapotranspiration ; Flowers & plants ; Hydraulic properties ; Hydrology ; lysimeter ; Lysimeters ; Major constituents ; Moisture effects ; moss evaporation ; Mosses ; Partitioning ; Permafrost ; Plants ; Polar environments ; Soil moisture ; Taiga & tundra ; Tundra ; tundra vegetation ; Understory ; Vegetation</subject><ispartof>Ecohydrology, 2023-01, Vol.16 (1), p.n/a</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</citedby><cites>FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</cites><orcidid>0000-0002-4810-5261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feco.2484$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feco.2484$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Clark, Jason A.</creatorcontrib><creatorcontrib>Tape, Ken D.</creatorcontrib><creatorcontrib>Young‐Robertson, Jessica M.</creatorcontrib><title>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</title><title>Ecohydrology</title><description>The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.</description><subject>Aquatic plants</subject><subject>Arctic</subject><subject>Bryophyta</subject><subject>Efflux</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Evapotranspiration</subject><subject>Flowers & plants</subject><subject>Hydraulic properties</subject><subject>Hydrology</subject><subject>lysimeter</subject><subject>Lysimeters</subject><subject>Major constituents</subject><subject>Moisture effects</subject><subject>moss evaporation</subject><subject>Mosses</subject><subject>Partitioning</subject><subject>Permafrost</subject><subject>Plants</subject><subject>Polar environments</subject><subject>Soil moisture</subject><subject>Taiga & tundra</subject><subject>Tundra</subject><subject>tundra vegetation</subject><subject>Understory</subject><subject>Vegetation</subject><issn>1936-0584</issn><issn>1936-0592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgR1jw4mVr_u5uj6XUKhSKUM9hmiYlpbtZk2xlv71pV7x5moH3ezOPh9AjwROCMX3Ryk0or_gVGpEpK3IspvT6b6_4LboL4YBxQbhgI_T50UETrelts8_0CVoXPTShtR6idU1mvKuznattk7Bs5lW0KjvpvY6DHvtWh6wLZ_uxD7bWUftwj24MHIN--J1jtHldbOZv-Wq9fJ_PVrmilPFcpJyGUVUJ2BqijCp22502JYABgUlVCCCl4ZewSYRtSc20AFPysmKKsTF6Gs623n11OkR5cJ1v0kdJy0JgXDFBE_U8UMq7ELw2svW2Bt9LguW5M5k6k-fOEpoP6Lc96v5fTi7m6wv_AwrXb0c</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Clark, Jason A.</creator><creator>Tape, Ken D.</creator><creator>Young‐Robertson, Jessica M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4810-5261</orcidid></search><sort><creationdate>202301</creationdate><title>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</title><author>Clark, Jason A. ; Tape, Ken D. ; Young‐Robertson, Jessica M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic plants</topic><topic>Arctic</topic><topic>Bryophyta</topic><topic>Efflux</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Evapotranspiration</topic><topic>Flowers & plants</topic><topic>Hydraulic properties</topic><topic>Hydrology</topic><topic>lysimeter</topic><topic>Lysimeters</topic><topic>Major constituents</topic><topic>Moisture effects</topic><topic>moss evaporation</topic><topic>Mosses</topic><topic>Partitioning</topic><topic>Permafrost</topic><topic>Plants</topic><topic>Polar environments</topic><topic>Soil moisture</topic><topic>Taiga & tundra</topic><topic>Tundra</topic><topic>tundra vegetation</topic><topic>Understory</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Jason A.</creatorcontrib><creatorcontrib>Tape, Ken D.</creatorcontrib><creatorcontrib>Young‐Robertson, Jessica M.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecohydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Jason A.</au><au>Tape, Ken D.</au><au>Young‐Robertson, Jessica M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</atitle><jtitle>Ecohydrology</jtitle><date>2023-01</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><epage>n/a</epage><issn>1936-0584</issn><eissn>1936-0592</eissn><abstract>The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eco.2484</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4810-5261</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0584 |
ispartof | Ecohydrology, 2023-01, Vol.16 (1), p.n/a |
issn | 1936-0584 1936-0592 |
language | eng |
recordid | cdi_proquest_journals_2765008352 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aquatic plants Arctic Bryophyta Efflux Evaporation Evaporation rate Evapotranspiration Flowers & plants Hydraulic properties Hydrology lysimeter Lysimeters Major constituents Moisture effects moss evaporation Mosses Partitioning Permafrost Plants Polar environments Soil moisture Taiga & tundra Tundra tundra vegetation Understory Vegetation |
title | Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20evapotranspiration%20from%20dominant%20Arctic%20vegetation%20types%20using%20lysimeters&rft.jtitle=Ecohydrology&rft.au=Clark,%20Jason%20A.&rft.date=2023-01&rft.volume=16&rft.issue=1&rft.epage=n/a&rft.issn=1936-0584&rft.eissn=1936-0592&rft_id=info:doi/10.1002/eco.2484&rft_dat=%3Cproquest_cross%3E2765008352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765008352&rft_id=info:pmid/&rfr_iscdi=true |