Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters

The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecohydrology 2023-01, Vol.16 (1), p.n/a
Hauptverfasser: Clark, Jason A., Tape, Ken D., Young‐Robertson, Jessica M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Ecohydrology
container_volume 16
creator Clark, Jason A.
Tape, Ken D.
Young‐Robertson, Jessica M.
description The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.
doi_str_mv 10.1002/eco.2484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2765008352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765008352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgR1jw4mVr_u5uj6XUKhSKUM9hmiYlpbtZk2xlv71pV7x5moH3ezOPh9AjwROCMX3Ryk0or_gVGpEpK3IspvT6b6_4LboL4YBxQbhgI_T50UETrelts8_0CVoXPTShtR6idU1mvKuznattk7Bs5lW0KjvpvY6DHvtWh6wLZ_uxD7bWUftwj24MHIN--J1jtHldbOZv-Wq9fJ_PVrmilPFcpJyGUVUJ2BqijCp22502JYABgUlVCCCl4ZewSYRtSc20AFPysmKKsTF6Gs623n11OkR5cJ1v0kdJy0JgXDFBE_U8UMq7ELw2svW2Bt9LguW5M5k6k-fOEpoP6Lc96v5fTi7m6wv_AwrXb0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765008352</pqid></control><display><type>article</type><title>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Clark, Jason A. ; Tape, Ken D. ; Young‐Robertson, Jessica M.</creator><creatorcontrib>Clark, Jason A. ; Tape, Ken D. ; Young‐Robertson, Jessica M.</creatorcontrib><description>The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.</description><identifier>ISSN: 1936-0584</identifier><identifier>EISSN: 1936-0592</identifier><identifier>DOI: 10.1002/eco.2484</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aquatic plants ; Arctic ; Bryophyta ; Efflux ; Evaporation ; Evaporation rate ; Evapotranspiration ; Flowers &amp; plants ; Hydraulic properties ; Hydrology ; lysimeter ; Lysimeters ; Major constituents ; Moisture effects ; moss evaporation ; Mosses ; Partitioning ; Permafrost ; Plants ; Polar environments ; Soil moisture ; Taiga &amp; tundra ; Tundra ; tundra vegetation ; Understory ; Vegetation</subject><ispartof>Ecohydrology, 2023-01, Vol.16 (1), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</citedby><cites>FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</cites><orcidid>0000-0002-4810-5261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feco.2484$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feco.2484$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Clark, Jason A.</creatorcontrib><creatorcontrib>Tape, Ken D.</creatorcontrib><creatorcontrib>Young‐Robertson, Jessica M.</creatorcontrib><title>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</title><title>Ecohydrology</title><description>The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.</description><subject>Aquatic plants</subject><subject>Arctic</subject><subject>Bryophyta</subject><subject>Efflux</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Evapotranspiration</subject><subject>Flowers &amp; plants</subject><subject>Hydraulic properties</subject><subject>Hydrology</subject><subject>lysimeter</subject><subject>Lysimeters</subject><subject>Major constituents</subject><subject>Moisture effects</subject><subject>moss evaporation</subject><subject>Mosses</subject><subject>Partitioning</subject><subject>Permafrost</subject><subject>Plants</subject><subject>Polar environments</subject><subject>Soil moisture</subject><subject>Taiga &amp; tundra</subject><subject>Tundra</subject><subject>tundra vegetation</subject><subject>Understory</subject><subject>Vegetation</subject><issn>1936-0584</issn><issn>1936-0592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgR1jw4mVr_u5uj6XUKhSKUM9hmiYlpbtZk2xlv71pV7x5moH3ezOPh9AjwROCMX3Ryk0or_gVGpEpK3IspvT6b6_4LboL4YBxQbhgI_T50UETrelts8_0CVoXPTShtR6idU1mvKuznattk7Bs5lW0KjvpvY6DHvtWh6wLZ_uxD7bWUftwj24MHIN--J1jtHldbOZv-Wq9fJ_PVrmilPFcpJyGUVUJ2BqijCp22502JYABgUlVCCCl4ZewSYRtSc20AFPysmKKsTF6Gs623n11OkR5cJ1v0kdJy0JgXDFBE_U8UMq7ELw2svW2Bt9LguW5M5k6k-fOEpoP6Lc96v5fTi7m6wv_AwrXb0c</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Clark, Jason A.</creator><creator>Tape, Ken D.</creator><creator>Young‐Robertson, Jessica M.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-4810-5261</orcidid></search><sort><creationdate>202301</creationdate><title>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</title><author>Clark, Jason A. ; Tape, Ken D. ; Young‐Robertson, Jessica M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2234-5484f32c85abf1cfc6dbdef7aafa501865a17f400614fc6ab72f96af74783c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic plants</topic><topic>Arctic</topic><topic>Bryophyta</topic><topic>Efflux</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Evapotranspiration</topic><topic>Flowers &amp; plants</topic><topic>Hydraulic properties</topic><topic>Hydrology</topic><topic>lysimeter</topic><topic>Lysimeters</topic><topic>Major constituents</topic><topic>Moisture effects</topic><topic>moss evaporation</topic><topic>Mosses</topic><topic>Partitioning</topic><topic>Permafrost</topic><topic>Plants</topic><topic>Polar environments</topic><topic>Soil moisture</topic><topic>Taiga &amp; tundra</topic><topic>Tundra</topic><topic>tundra vegetation</topic><topic>Understory</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Jason A.</creatorcontrib><creatorcontrib>Tape, Ken D.</creatorcontrib><creatorcontrib>Young‐Robertson, Jessica M.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Ecohydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Jason A.</au><au>Tape, Ken D.</au><au>Young‐Robertson, Jessica M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters</atitle><jtitle>Ecohydrology</jtitle><date>2023-01</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><epage>n/a</epage><issn>1936-0584</issn><eissn>1936-0592</eissn><abstract>The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eco.2484</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4810-5261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0584
ispartof Ecohydrology, 2023-01, Vol.16 (1), p.n/a
issn 1936-0584
1936-0592
language eng
recordid cdi_proquest_journals_2765008352
source Wiley Online Library Journals Frontfile Complete
subjects Aquatic plants
Arctic
Bryophyta
Efflux
Evaporation
Evaporation rate
Evapotranspiration
Flowers & plants
Hydraulic properties
Hydrology
lysimeter
Lysimeters
Major constituents
Moisture effects
moss evaporation
Mosses
Partitioning
Permafrost
Plants
Polar environments
Soil moisture
Taiga & tundra
Tundra
tundra vegetation
Understory
Vegetation
title Quantifying evapotranspiration from dominant Arctic vegetation types using lysimeters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20evapotranspiration%20from%20dominant%20Arctic%20vegetation%20types%20using%20lysimeters&rft.jtitle=Ecohydrology&rft.au=Clark,%20Jason%20A.&rft.date=2023-01&rft.volume=16&rft.issue=1&rft.epage=n/a&rft.issn=1936-0584&rft.eissn=1936-0592&rft_id=info:doi/10.1002/eco.2484&rft_dat=%3Cproquest_cross%3E2765008352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765008352&rft_id=info:pmid/&rfr_iscdi=true