Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation
We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2023-02, Vol.111 (3), p.2621-2629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2629 |
---|---|
container_issue | 3 |
container_start_page | 2621 |
container_title | Nonlinear dynamics |
container_volume | 111 |
creator | Ding, Cui-Cui Zhou, Qin Triki, Houria Sun, Yunzhou Biswas, Anjan |
description | We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region. |
doi_str_mv | 10.1007/s11071-022-07938-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2764836443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2764836443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngOTr50032KK1_CgUPKtRTyO5mdWubtMlW25vv4Bv6JMau4M3DMDPwfd8MP4ROKZxTAHkRKQVJCTBGQOZckc0e6tGB5IRl-XQf9SBngkAO00N0FOMMADgD1UNPo60zi6aM2Ne4MuEVG1elahuy26KfN613Edc-4PbF4g1x3s19aeZ4ZN7s9uvj87617ya00Ts8HmO7Wpu28e4YHdRmHu3Jb--jx-urh-EtmdzdjIeXE1JymrckvV8BCFpUshCQ14zKolR5GoSt1QAYzbNS0qLklWTMlopxZbkoFLUDXlcV76OzLncZ_GptY6tnfh1cOqmZzITimRA8qVinKoOPMdhaL0OzMGGrKegfhLpDqBNCvUOoN8nEO1NMYvdsw1_0P65v3dZ1fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764836443</pqid></control><display><type>article</type><title>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</title><source>SpringerLink Journals</source><creator>Ding, Cui-Cui ; Zhou, Qin ; Triki, Houria ; Sun, Yunzhou ; Biswas, Anjan</creator><creatorcontrib>Ding, Cui-Cui ; Zhou, Qin ; Triki, Houria ; Sun, Yunzhou ; Biswas, Anjan</creatorcontrib><description>We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07938-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied mathematics ; Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Exact solutions ; Mechanical Engineering ; Original Paper ; Physics ; Solitary waves ; Symmetry ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-02, Vol.111 (3), p.2621-2629</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</citedby><cites>FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</cites><orcidid>0000-0001-5334-7188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07938-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07938-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><creatorcontrib>Biswas, Anjan</creatorcontrib><title>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.</description><subject>Applied mathematics</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Solitary waves</subject><subject>Symmetry</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM9KAzEQxoMoWKsv4CngOTr50032KK1_CgUPKtRTyO5mdWubtMlW25vv4Bv6JMau4M3DMDPwfd8MP4ROKZxTAHkRKQVJCTBGQOZckc0e6tGB5IRl-XQf9SBngkAO00N0FOMMADgD1UNPo60zi6aM2Ne4MuEVG1elahuy26KfN613Edc-4PbF4g1x3s19aeZ4ZN7s9uvj87617ya00Ts8HmO7Wpu28e4YHdRmHu3Jb--jx-urh-EtmdzdjIeXE1JymrckvV8BCFpUshCQ14zKolR5GoSt1QAYzbNS0qLklWTMlopxZbkoFLUDXlcV76OzLncZ_GptY6tnfh1cOqmZzITimRA8qVinKoOPMdhaL0OzMGGrKegfhLpDqBNCvUOoN8nEO1NMYvdsw1_0P65v3dZ1fw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ding, Cui-Cui</creator><creator>Zhou, Qin</creator><creator>Triki, Houria</creator><creator>Sun, Yunzhou</creator><creator>Biswas, Anjan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5334-7188</orcidid></search><sort><creationdate>20230201</creationdate><title>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</title><author>Ding, Cui-Cui ; Zhou, Qin ; Triki, Houria ; Sun, Yunzhou ; Biswas, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Solitary waves</topic><topic>Symmetry</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><creatorcontrib>Biswas, Anjan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Cui-Cui</au><au>Zhou, Qin</au><au>Triki, Houria</au><au>Sun, Yunzhou</au><au>Biswas, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>111</volume><issue>3</issue><spage>2621</spage><epage>2629</epage><pages>2621-2629</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07938-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5334-7188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2023-02, Vol.111 (3), p.2621-2629 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2764836443 |
source | SpringerLink Journals |
subjects | Applied mathematics Automotive Engineering Classical Mechanics Control Dynamical Systems Engineering Exact solutions Mechanical Engineering Original Paper Physics Solitary waves Symmetry Vibration |
title | Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20dark%20and%20anti-dark%20solitons%20for%20the%20x-nonlocal%20Davey%E2%80%93Stewartson%20II%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Ding,%20Cui-Cui&rft.date=2023-02-01&rft.volume=111&rft.issue=3&rft.spage=2621&rft.epage=2629&rft.pages=2621-2629&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07938-x&rft_dat=%3Cproquest_cross%3E2764836443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764836443&rft_id=info:pmid/&rfr_iscdi=true |