Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation

We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2023-02, Vol.111 (3), p.2621-2629
Hauptverfasser: Ding, Cui-Cui, Zhou, Qin, Triki, Houria, Sun, Yunzhou, Biswas, Anjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2629
container_issue 3
container_start_page 2621
container_title Nonlinear dynamics
container_volume 111
creator Ding, Cui-Cui
Zhou, Qin
Triki, Houria
Sun, Yunzhou
Biswas, Anjan
description We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.
doi_str_mv 10.1007/s11071-022-07938-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2764836443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2764836443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4CngOTr50032KK1_CgUPKtRTyO5mdWubtMlW25vv4Bv6JMau4M3DMDPwfd8MP4ROKZxTAHkRKQVJCTBGQOZckc0e6tGB5IRl-XQf9SBngkAO00N0FOMMADgD1UNPo60zi6aM2Ne4MuEVG1elahuy26KfN613Edc-4PbF4g1x3s19aeZ4ZN7s9uvj87617ya00Ts8HmO7Wpu28e4YHdRmHu3Jb--jx-urh-EtmdzdjIeXE1JymrckvV8BCFpUshCQ14zKolR5GoSt1QAYzbNS0qLklWTMlopxZbkoFLUDXlcV76OzLncZ_GptY6tnfh1cOqmZzITimRA8qVinKoOPMdhaL0OzMGGrKegfhLpDqBNCvUOoN8nEO1NMYvdsw1_0P65v3dZ1fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764836443</pqid></control><display><type>article</type><title>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</title><source>SpringerLink Journals</source><creator>Ding, Cui-Cui ; Zhou, Qin ; Triki, Houria ; Sun, Yunzhou ; Biswas, Anjan</creator><creatorcontrib>Ding, Cui-Cui ; Zhou, Qin ; Triki, Houria ; Sun, Yunzhou ; Biswas, Anjan</creatorcontrib><description>We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-022-07938-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied mathematics ; Automotive Engineering ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Exact solutions ; Mechanical Engineering ; Original Paper ; Physics ; Solitary waves ; Symmetry ; Vibration</subject><ispartof>Nonlinear dynamics, 2023-02, Vol.111 (3), p.2621-2629</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</citedby><cites>FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</cites><orcidid>0000-0001-5334-7188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-022-07938-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-022-07938-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><creatorcontrib>Biswas, Anjan</creatorcontrib><title>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.</description><subject>Applied mathematics</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Solitary waves</subject><subject>Symmetry</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM9KAzEQxoMoWKsv4CngOTr50032KK1_CgUPKtRTyO5mdWubtMlW25vv4Bv6JMau4M3DMDPwfd8MP4ROKZxTAHkRKQVJCTBGQOZckc0e6tGB5IRl-XQf9SBngkAO00N0FOMMADgD1UNPo60zi6aM2Ne4MuEVG1elahuy26KfN613Edc-4PbF4g1x3s19aeZ4ZN7s9uvj87617ya00Ts8HmO7Wpu28e4YHdRmHu3Jb--jx-urh-EtmdzdjIeXE1JymrckvV8BCFpUshCQ14zKolR5GoSt1QAYzbNS0qLklWTMlopxZbkoFLUDXlcV76OzLncZ_GptY6tnfh1cOqmZzITimRA8qVinKoOPMdhaL0OzMGGrKegfhLpDqBNCvUOoN8nEO1NMYvdsw1_0P65v3dZ1fw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ding, Cui-Cui</creator><creator>Zhou, Qin</creator><creator>Triki, Houria</creator><creator>Sun, Yunzhou</creator><creator>Biswas, Anjan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5334-7188</orcidid></search><sort><creationdate>20230201</creationdate><title>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</title><author>Ding, Cui-Cui ; Zhou, Qin ; Triki, Houria ; Sun, Yunzhou ; Biswas, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-100d0041bd7b409f217bc899f24ef8502196c71bc3d722ec8238e34b81e53fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Solitary waves</topic><topic>Symmetry</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Cui-Cui</creatorcontrib><creatorcontrib>Zhou, Qin</creatorcontrib><creatorcontrib>Triki, Houria</creatorcontrib><creatorcontrib>Sun, Yunzhou</creatorcontrib><creatorcontrib>Biswas, Anjan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Cui-Cui</au><au>Zhou, Qin</au><au>Triki, Houria</au><au>Sun, Yunzhou</au><au>Biswas, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>111</volume><issue>3</issue><spage>2621</spage><epage>2629</epage><pages>2621-2629</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We investigate the x-nonlocal Davey–Stewartson II equation based on Kadomtsev–Petviashvili hierarchy reduction method, and then report dark solitons and (semi-) rational solutions expressed in the Gram-type determinant. As an application of those obtained analytical solutions, we study the evolution scenarios of the dark/anti-dark solitons on nonzero backgrounds. In addition, we analyze three kinds of the elastic interactions between the dark solitons and/or anti-dark solitons via the asymptotic analysis. In particular, we present the discovery of degenerate two solitons as single dark soliton or single anti-dark soliton. Besides, we investigate five kinds of the four solitons and four kinds of the degenerate four solitons. We find that the degenerate four solitons are different from the general three solitons, since the invisible soliton will still affect the three visible solitons in the interaction region.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-022-07938-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5334-7188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2023-02, Vol.111 (3), p.2621-2629
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2764836443
source SpringerLink Journals
subjects Applied mathematics
Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Exact solutions
Mechanical Engineering
Original Paper
Physics
Solitary waves
Symmetry
Vibration
title Dynamics of dark and anti-dark solitons for the x-nonlocal Davey–Stewartson II equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20dark%20and%20anti-dark%20solitons%20for%20the%20x-nonlocal%20Davey%E2%80%93Stewartson%20II%20equation&rft.jtitle=Nonlinear%20dynamics&rft.au=Ding,%20Cui-Cui&rft.date=2023-02-01&rft.volume=111&rft.issue=3&rft.spage=2621&rft.epage=2629&rft.pages=2621-2629&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-022-07938-x&rft_dat=%3Cproquest_cross%3E2764836443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764836443&rft_id=info:pmid/&rfr_iscdi=true