Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization
Accurate tracking of the 3D pose of animals from video recordings is critical for many behavioral studies, yet there is a dearth of publicly available datasets that the computer vision community could use for model development. We here introduce the Rodent3D dataset that records animals exploring th...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2023-02, Vol.131 (2), p.514-530 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 2 |
container_start_page | 514 |
container_title | International journal of computer vision |
container_volume | 131 |
creator | Patel, Mahir Gu, Yiwen Carstensen, Lucas C. Hasselmo, Michael E. Betke, Margrit |
description | Accurate tracking of the 3D pose of animals from video recordings is critical for many behavioral studies, yet there is a dearth of publicly available datasets that the computer vision community could use for model development. We here introduce the Rodent3D dataset that records animals exploring their environment and/or interacting with each other with multiple cameras and modalities (RGB, depth, thermal infrared). Rodent3D consists of 200 min of multimodal video recordings from up to three thermal and three RGB-D synchronized cameras (approximately 4 million frames). For the task of optimizing estimates of pose sequences provided by existing pose estimation methods, we provide a baseline model called
OptiPose
. While deep-learned attention mechanisms have been used for pose estimation in the past, with
OptiPose
, we propose a different way by representing 3D poses as tokens for which deep-learned context models pay attention to both spatial and temporal keypoint patterns. Our experiments show how
OptiPose
is highly robust to noise and occlusion and can be used to optimize pose sequences provided by state-of-the-art models for animal pose estimation. |
doi_str_mv | 10.1007/s11263-022-01714-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2763979638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733018376</galeid><sourcerecordid>A733018376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-717303dc33fc8f0373e412cf4b3edeeb1d1645845fc26ff69ba4616ab49ee6d03</originalsourceid><addsrcrecordid>eNp9kUFPIyEUx8lGk611v8CeJvHkAQUeAzPemtbdbaKpcbtnwsw8mtEW6kAT9dPL7mxivBgOhMfvBw_-hHzn7IIzpi8j50IBZUJQxjWXtPxCJrzUQLlk5RGZsFowWqqafyUnMT4wxkQlYEJuZ77f2W1xFyIW68G2j73fXBWwKG4P29TvQpc3FzbZiKmwvivW4RE9bfK6G6XVPmP9q0198Kfk2NltxG__5yn58-N6Pf9Fb1Y_l_PZDW0lqEQ118CgawFcWzkGGlBy0TrZAHaIDe-4kmUlS9cK5ZyqGysVV7aRNaLqGEzJ2XjufghPB4zJPITD4POVRmgFta4VVJm6GKmN3aLpvQspPzCPDnd9Gzy6PtdnGoDxCrI3JecfhMwkfE4be4jRLH_ff2TFyLZDiHFAZ_ZD_snhxXBm_mZixkxMzsT8y8SUWYJRihn2Gxze-_7EegMY24yG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763979638</pqid></control><display><type>article</type><title>Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Patel, Mahir ; Gu, Yiwen ; Carstensen, Lucas C. ; Hasselmo, Michael E. ; Betke, Margrit</creator><creatorcontrib>Patel, Mahir ; Gu, Yiwen ; Carstensen, Lucas C. ; Hasselmo, Michael E. ; Betke, Margrit</creatorcontrib><description>Accurate tracking of the 3D pose of animals from video recordings is critical for many behavioral studies, yet there is a dearth of publicly available datasets that the computer vision community could use for model development. We here introduce the Rodent3D dataset that records animals exploring their environment and/or interacting with each other with multiple cameras and modalities (RGB, depth, thermal infrared). Rodent3D consists of 200 min of multimodal video recordings from up to three thermal and three RGB-D synchronized cameras (approximately 4 million frames). For the task of optimizing estimates of pose sequences provided by existing pose estimation methods, we provide a baseline model called
OptiPose
. While deep-learned attention mechanisms have been used for pose estimation in the past, with
OptiPose
, we propose a different way by representing 3D poses as tokens for which deep-learned context models pay attention to both spatial and temporal keypoint patterns. Our experiments show how
OptiPose
is highly robust to noise and occlusion and can be used to optimize pose sequences provided by state-of-the-art models for animal pose estimation.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-022-01714-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Animal behavior ; Animals ; Artificial Intelligence ; Cameras ; Computational linguistics ; Computer Imaging ; Computer Science ; Computer vision ; Datasets ; Image Processing and Computer Vision ; Language processing ; Machine vision ; Natural language interfaces ; Occlusion ; Optimization ; Pattern Recognition ; Pattern Recognition and Graphics ; Pose estimation ; Special Issue on Computer Vision Approach for Animal Tracking and Modeling ; Tracking ; Vision</subject><ispartof>International journal of computer vision, 2023-02, Vol.131 (2), p.514-530</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-717303dc33fc8f0373e412cf4b3edeeb1d1645845fc26ff69ba4616ab49ee6d03</citedby><cites>FETCH-LOGICAL-c436t-717303dc33fc8f0373e412cf4b3edeeb1d1645845fc26ff69ba4616ab49ee6d03</cites><orcidid>0000-0002-2437-0343 ; 0000-0002-3370-4595 ; 0000-0003-2747-0275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-022-01714-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-022-01714-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Patel, Mahir</creatorcontrib><creatorcontrib>Gu, Yiwen</creatorcontrib><creatorcontrib>Carstensen, Lucas C.</creatorcontrib><creatorcontrib>Hasselmo, Michael E.</creatorcontrib><creatorcontrib>Betke, Margrit</creatorcontrib><title>Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Accurate tracking of the 3D pose of animals from video recordings is critical for many behavioral studies, yet there is a dearth of publicly available datasets that the computer vision community could use for model development. We here introduce the Rodent3D dataset that records animals exploring their environment and/or interacting with each other with multiple cameras and modalities (RGB, depth, thermal infrared). Rodent3D consists of 200 min of multimodal video recordings from up to three thermal and three RGB-D synchronized cameras (approximately 4 million frames). For the task of optimizing estimates of pose sequences provided by existing pose estimation methods, we provide a baseline model called
OptiPose
. While deep-learned attention mechanisms have been used for pose estimation in the past, with
OptiPose
, we propose a different way by representing 3D poses as tokens for which deep-learned context models pay attention to both spatial and temporal keypoint patterns. Our experiments show how
OptiPose
is highly robust to noise and occlusion and can be used to optimize pose sequences provided by state-of-the-art models for animal pose estimation.</description><subject>Analysis</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Computational linguistics</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Language processing</subject><subject>Machine vision</subject><subject>Natural language interfaces</subject><subject>Occlusion</subject><subject>Optimization</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pose estimation</subject><subject>Special Issue on Computer Vision Approach for Animal Tracking and Modeling</subject><subject>Tracking</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFPIyEUx8lGk611v8CeJvHkAQUeAzPemtbdbaKpcbtnwsw8mtEW6kAT9dPL7mxivBgOhMfvBw_-hHzn7IIzpi8j50IBZUJQxjWXtPxCJrzUQLlk5RGZsFowWqqafyUnMT4wxkQlYEJuZ77f2W1xFyIW68G2j73fXBWwKG4P29TvQpc3FzbZiKmwvivW4RE9bfK6G6XVPmP9q0198Kfk2NltxG__5yn58-N6Pf9Fb1Y_l_PZDW0lqEQ118CgawFcWzkGGlBy0TrZAHaIDe-4kmUlS9cK5ZyqGysVV7aRNaLqGEzJ2XjufghPB4zJPITD4POVRmgFta4VVJm6GKmN3aLpvQspPzCPDnd9Gzy6PtdnGoDxCrI3JecfhMwkfE4be4jRLH_ff2TFyLZDiHFAZ_ZD_snhxXBm_mZixkxMzsT8y8SUWYJRihn2Gxze-_7EegMY24yG</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Patel, Mahir</creator><creator>Gu, Yiwen</creator><creator>Carstensen, Lucas C.</creator><creator>Hasselmo, Michael E.</creator><creator>Betke, Margrit</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2437-0343</orcidid><orcidid>https://orcid.org/0000-0002-3370-4595</orcidid><orcidid>https://orcid.org/0000-0003-2747-0275</orcidid></search><sort><creationdate>20230201</creationdate><title>Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization</title><author>Patel, Mahir ; Gu, Yiwen ; Carstensen, Lucas C. ; Hasselmo, Michael E. ; Betke, Margrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-717303dc33fc8f0373e412cf4b3edeeb1d1645845fc26ff69ba4616ab49ee6d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Computational linguistics</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Language processing</topic><topic>Machine vision</topic><topic>Natural language interfaces</topic><topic>Occlusion</topic><topic>Optimization</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pose estimation</topic><topic>Special Issue on Computer Vision Approach for Animal Tracking and Modeling</topic><topic>Tracking</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Mahir</creatorcontrib><creatorcontrib>Gu, Yiwen</creatorcontrib><creatorcontrib>Carstensen, Lucas C.</creatorcontrib><creatorcontrib>Hasselmo, Michael E.</creatorcontrib><creatorcontrib>Betke, Margrit</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Mahir</au><au>Gu, Yiwen</au><au>Carstensen, Lucas C.</au><au>Hasselmo, Michael E.</au><au>Betke, Margrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>131</volume><issue>2</issue><spage>514</spage><epage>530</epage><pages>514-530</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Accurate tracking of the 3D pose of animals from video recordings is critical for many behavioral studies, yet there is a dearth of publicly available datasets that the computer vision community could use for model development. We here introduce the Rodent3D dataset that records animals exploring their environment and/or interacting with each other with multiple cameras and modalities (RGB, depth, thermal infrared). Rodent3D consists of 200 min of multimodal video recordings from up to three thermal and three RGB-D synchronized cameras (approximately 4 million frames). For the task of optimizing estimates of pose sequences provided by existing pose estimation methods, we provide a baseline model called
OptiPose
. While deep-learned attention mechanisms have been used for pose estimation in the past, with
OptiPose
, we propose a different way by representing 3D poses as tokens for which deep-learned context models pay attention to both spatial and temporal keypoint patterns. Our experiments show how
OptiPose
is highly robust to noise and occlusion and can be used to optimize pose sequences provided by state-of-the-art models for animal pose estimation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-022-01714-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2437-0343</orcidid><orcidid>https://orcid.org/0000-0002-3370-4595</orcidid><orcidid>https://orcid.org/0000-0003-2747-0275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2023-02, Vol.131 (2), p.514-530 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_journals_2763979638 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Animal behavior Animals Artificial Intelligence Cameras Computational linguistics Computer Imaging Computer Science Computer vision Datasets Image Processing and Computer Vision Language processing Machine vision Natural language interfaces Occlusion Optimization Pattern Recognition Pattern Recognition and Graphics Pose estimation Special Issue on Computer Vision Approach for Animal Tracking and Modeling Tracking Vision |
title | Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Animal%20Pose%20Tracking:%203D%20Multimodal%20Dataset%20and%20Token-based%20Pose%20Optimization&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Patel,%20Mahir&rft.date=2023-02-01&rft.volume=131&rft.issue=2&rft.spage=514&rft.epage=530&rft.pages=514-530&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-022-01714-5&rft_dat=%3Cgale_proqu%3EA733018376%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763979638&rft_id=info:pmid/&rft_galeid=A733018376&rfr_iscdi=true |