Multiscale modeling of solute diffusion in triblock copolymer membranes

We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-01, Vol.158 (2), p.024905-024905
Hauptverfasser: Cooper, Anthony J., Howard, Michael P., Kadulkar, Sanket, Zhao, David, Delaney, Kris T., Ganesan, Venkat, Truskett, Thomas M., Fredrickson, Glenn H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024905
container_issue 2
container_start_page 024905
container_title The Journal of chemical physics
container_volume 158
creator Cooper, Anthony J.
Howard, Michael P.
Kadulkar, Sanket
Zhao, David
Delaney, Kris T.
Ganesan, Venkat
Truskett, Thomas M.
Fredrickson, Glenn H.
description We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.
doi_str_mv 10.1063/5.0127570
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2763871943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765778292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBRWppN0kP_QDDtJSk4HUm2Po4h5KOQkEt6FrY8bpXK1laSA_n31bKbBFroSZeHV-_MEPKRwikFwb-2p0CZbCW8ISsKStdSaHhLVgCM1lqA2CP7KT0AAJWseU_2uBANbUCuyNXt4rNLtvNYTWFA7-YfVRirFPySsRrcOC7Jhblyc5Wj632wvyob1sE_TRirCac-djOmQ_Ju7HzCD7v3gHy_vLg_v65v7q6-nZ_d1LZp2lxryuwIArDng7QKx14PWomhFKKUt6JRnaCSKqCaCWZ7BDX0ZUbsZMcZB35APm1zQ8rOJOsy2p82zDPabKgGpZq2oOMtWsfwe8GUzVRGRO9L07Akw6RopVRMs0I__0UfwhLnMsJGcSWpbnhRJ1tlY0gp4mjW0U1dfDIUzOYEpjW7ExR7tEtc-gmHF_m88wK-bMGmfZfLcl_MY4ivSWY9jP_D_379B3d2mnU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763871943</pqid></control><display><type>article</type><title>Multiscale modeling of solute diffusion in triblock copolymer membranes</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cooper, Anthony J. ; Howard, Michael P. ; Kadulkar, Sanket ; Zhao, David ; Delaney, Kris T. ; Ganesan, Venkat ; Truskett, Thomas M. ; Fredrickson, Glenn H.</creator><creatorcontrib>Cooper, Anthony J. ; Howard, Michael P. ; Kadulkar, Sanket ; Zhao, David ; Delaney, Kris T. ; Ganesan, Venkat ; Truskett, Thomas M. ; Fredrickson, Glenn H.</creatorcontrib><description>We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0127570</identifier><identifier>PMID: 36641407</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Block copolymers ; Computer Simulation ; Diffusion ; Diffusivity ; Field theory ; Membranes ; Modelling ; Morphology ; Polymer coatings ; Polymers - chemistry ; Random walk ; Self consistent fields ; Self-assembly ; Simulation ; Simulation models ; Solutions ; Solvation ; Solvents - chemistry ; Spatial distribution</subject><ispartof>The Journal of chemical physics, 2023-01, Vol.158 (2), p.024905-024905</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</citedby><cites>FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</cites><orcidid>0000-0002-6716-9017 ; 0000-0002-9561-4165 ; 0000-0003-3899-5843 ; 0000-0003-0356-1391 ; 0000-0002-5185-6920 ; 0000-0002-9807-8206 ; 0000-0002-6607-6468 ; 0000-0002-2834-7677 ; 0000000298078206 ; 0000000251856920 ; 0000000295614165 ; 0000000266076468 ; 0000000338995843 ; 0000000267169017 ; 0000000228347677 ; 0000000303561391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0127570$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36641407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1908845$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Anthony J.</creatorcontrib><creatorcontrib>Howard, Michael P.</creatorcontrib><creatorcontrib>Kadulkar, Sanket</creatorcontrib><creatorcontrib>Zhao, David</creatorcontrib><creatorcontrib>Delaney, Kris T.</creatorcontrib><creatorcontrib>Ganesan, Venkat</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Fredrickson, Glenn H.</creatorcontrib><title>Multiscale modeling of solute diffusion in triblock copolymer membranes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.</description><subject>Block copolymers</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Diffusivity</subject><subject>Field theory</subject><subject>Membranes</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Polymer coatings</subject><subject>Polymers - chemistry</subject><subject>Random walk</subject><subject>Self consistent fields</subject><subject>Self-assembly</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Solutions</subject><subject>Solvation</subject><subject>Solvents - chemistry</subject><subject>Spatial distribution</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1r3DAQBmBRWppN0kP_QDDtJSk4HUm2Po4h5KOQkEt6FrY8bpXK1laSA_n31bKbBFroSZeHV-_MEPKRwikFwb-2p0CZbCW8ISsKStdSaHhLVgCM1lqA2CP7KT0AAJWseU_2uBANbUCuyNXt4rNLtvNYTWFA7-YfVRirFPySsRrcOC7Jhblyc5Wj632wvyob1sE_TRirCac-djOmQ_Ju7HzCD7v3gHy_vLg_v65v7q6-nZ_d1LZp2lxryuwIArDng7QKx14PWomhFKKUt6JRnaCSKqCaCWZ7BDX0ZUbsZMcZB35APm1zQ8rOJOsy2p82zDPabKgGpZq2oOMtWsfwe8GUzVRGRO9L07Akw6RopVRMs0I__0UfwhLnMsJGcSWpbnhRJ1tlY0gp4mjW0U1dfDIUzOYEpjW7ExR7tEtc-gmHF_m88wK-bMGmfZfLcl_MY4ivSWY9jP_D_379B3d2mnU</recordid><startdate>20230114</startdate><enddate>20230114</enddate><creator>Cooper, Anthony J.</creator><creator>Howard, Michael P.</creator><creator>Kadulkar, Sanket</creator><creator>Zhao, David</creator><creator>Delaney, Kris T.</creator><creator>Ganesan, Venkat</creator><creator>Truskett, Thomas M.</creator><creator>Fredrickson, Glenn H.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6716-9017</orcidid><orcidid>https://orcid.org/0000-0002-9561-4165</orcidid><orcidid>https://orcid.org/0000-0003-3899-5843</orcidid><orcidid>https://orcid.org/0000-0003-0356-1391</orcidid><orcidid>https://orcid.org/0000-0002-5185-6920</orcidid><orcidid>https://orcid.org/0000-0002-9807-8206</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-2834-7677</orcidid><orcidid>https://orcid.org/0000000298078206</orcidid><orcidid>https://orcid.org/0000000251856920</orcidid><orcidid>https://orcid.org/0000000295614165</orcidid><orcidid>https://orcid.org/0000000266076468</orcidid><orcidid>https://orcid.org/0000000338995843</orcidid><orcidid>https://orcid.org/0000000267169017</orcidid><orcidid>https://orcid.org/0000000228347677</orcidid><orcidid>https://orcid.org/0000000303561391</orcidid></search><sort><creationdate>20230114</creationdate><title>Multiscale modeling of solute diffusion in triblock copolymer membranes</title><author>Cooper, Anthony J. ; Howard, Michael P. ; Kadulkar, Sanket ; Zhao, David ; Delaney, Kris T. ; Ganesan, Venkat ; Truskett, Thomas M. ; Fredrickson, Glenn H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Block copolymers</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Diffusivity</topic><topic>Field theory</topic><topic>Membranes</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Polymer coatings</topic><topic>Polymers - chemistry</topic><topic>Random walk</topic><topic>Self consistent fields</topic><topic>Self-assembly</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Solutions</topic><topic>Solvation</topic><topic>Solvents - chemistry</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Anthony J.</creatorcontrib><creatorcontrib>Howard, Michael P.</creatorcontrib><creatorcontrib>Kadulkar, Sanket</creatorcontrib><creatorcontrib>Zhao, David</creatorcontrib><creatorcontrib>Delaney, Kris T.</creatorcontrib><creatorcontrib>Ganesan, Venkat</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Fredrickson, Glenn H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Anthony J.</au><au>Howard, Michael P.</au><au>Kadulkar, Sanket</au><au>Zhao, David</au><au>Delaney, Kris T.</au><au>Ganesan, Venkat</au><au>Truskett, Thomas M.</au><au>Fredrickson, Glenn H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modeling of solute diffusion in triblock copolymer membranes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-01-14</date><risdate>2023</risdate><volume>158</volume><issue>2</issue><spage>024905</spage><epage>024905</epage><pages>024905-024905</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36641407</pmid><doi>10.1063/5.0127570</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6716-9017</orcidid><orcidid>https://orcid.org/0000-0002-9561-4165</orcidid><orcidid>https://orcid.org/0000-0003-3899-5843</orcidid><orcidid>https://orcid.org/0000-0003-0356-1391</orcidid><orcidid>https://orcid.org/0000-0002-5185-6920</orcidid><orcidid>https://orcid.org/0000-0002-9807-8206</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-2834-7677</orcidid><orcidid>https://orcid.org/0000000298078206</orcidid><orcidid>https://orcid.org/0000000251856920</orcidid><orcidid>https://orcid.org/0000000295614165</orcidid><orcidid>https://orcid.org/0000000266076468</orcidid><orcidid>https://orcid.org/0000000338995843</orcidid><orcidid>https://orcid.org/0000000267169017</orcidid><orcidid>https://orcid.org/0000000228347677</orcidid><orcidid>https://orcid.org/0000000303561391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-01, Vol.158 (2), p.024905-024905
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2763871943
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Block copolymers
Computer Simulation
Diffusion
Diffusivity
Field theory
Membranes
Modelling
Morphology
Polymer coatings
Polymers - chemistry
Random walk
Self consistent fields
Self-assembly
Simulation
Simulation models
Solutions
Solvation
Solvents - chemistry
Spatial distribution
title Multiscale modeling of solute diffusion in triblock copolymer membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modeling%20of%20solute%20diffusion%20in%20triblock%20copolymer%20membranes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cooper,%20Anthony%20J.&rft.date=2023-01-14&rft.volume=158&rft.issue=2&rft.spage=024905&rft.epage=024905&rft.pages=024905-024905&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0127570&rft_dat=%3Cproquest_osti_%3E2765778292%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763871943&rft_id=info:pmid/36641407&rfr_iscdi=true