Multiscale modeling of solute diffusion in triblock copolymer membranes
We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulati...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-01, Vol.158 (2), p.024905-024905 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 024905 |
---|---|
container_issue | 2 |
container_start_page | 024905 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Cooper, Anthony J. Howard, Michael P. Kadulkar, Sanket Zhao, David Delaney, Kris T. Ganesan, Venkat Truskett, Thomas M. Fredrickson, Glenn H. |
description | We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane. |
doi_str_mv | 10.1063/5.0127570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2763871943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765778292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBRWppN0kP_QDDtJSk4HUm2Po4h5KOQkEt6FrY8bpXK1laSA_n31bKbBFroSZeHV-_MEPKRwikFwb-2p0CZbCW8ISsKStdSaHhLVgCM1lqA2CP7KT0AAJWseU_2uBANbUCuyNXt4rNLtvNYTWFA7-YfVRirFPySsRrcOC7Jhblyc5Wj632wvyob1sE_TRirCac-djOmQ_Ju7HzCD7v3gHy_vLg_v65v7q6-nZ_d1LZp2lxryuwIArDng7QKx14PWomhFKKUt6JRnaCSKqCaCWZ7BDX0ZUbsZMcZB35APm1zQ8rOJOsy2p82zDPabKgGpZq2oOMtWsfwe8GUzVRGRO9L07Akw6RopVRMs0I__0UfwhLnMsJGcSWpbnhRJ1tlY0gp4mjW0U1dfDIUzOYEpjW7ExR7tEtc-gmHF_m88wK-bMGmfZfLcl_MY4ivSWY9jP_D_379B3d2mnU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763871943</pqid></control><display><type>article</type><title>Multiscale modeling of solute diffusion in triblock copolymer membranes</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cooper, Anthony J. ; Howard, Michael P. ; Kadulkar, Sanket ; Zhao, David ; Delaney, Kris T. ; Ganesan, Venkat ; Truskett, Thomas M. ; Fredrickson, Glenn H.</creator><creatorcontrib>Cooper, Anthony J. ; Howard, Michael P. ; Kadulkar, Sanket ; Zhao, David ; Delaney, Kris T. ; Ganesan, Venkat ; Truskett, Thomas M. ; Fredrickson, Glenn H.</creatorcontrib><description>We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0127570</identifier><identifier>PMID: 36641407</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Block copolymers ; Computer Simulation ; Diffusion ; Diffusivity ; Field theory ; Membranes ; Modelling ; Morphology ; Polymer coatings ; Polymers - chemistry ; Random walk ; Self consistent fields ; Self-assembly ; Simulation ; Simulation models ; Solutions ; Solvation ; Solvents - chemistry ; Spatial distribution</subject><ispartof>The Journal of chemical physics, 2023-01, Vol.158 (2), p.024905-024905</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</citedby><cites>FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</cites><orcidid>0000-0002-6716-9017 ; 0000-0002-9561-4165 ; 0000-0003-3899-5843 ; 0000-0003-0356-1391 ; 0000-0002-5185-6920 ; 0000-0002-9807-8206 ; 0000-0002-6607-6468 ; 0000-0002-2834-7677 ; 0000000298078206 ; 0000000251856920 ; 0000000295614165 ; 0000000266076468 ; 0000000338995843 ; 0000000267169017 ; 0000000228347677 ; 0000000303561391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0127570$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36641407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1908845$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Anthony J.</creatorcontrib><creatorcontrib>Howard, Michael P.</creatorcontrib><creatorcontrib>Kadulkar, Sanket</creatorcontrib><creatorcontrib>Zhao, David</creatorcontrib><creatorcontrib>Delaney, Kris T.</creatorcontrib><creatorcontrib>Ganesan, Venkat</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Fredrickson, Glenn H.</creatorcontrib><title>Multiscale modeling of solute diffusion in triblock copolymer membranes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.</description><subject>Block copolymers</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Diffusivity</subject><subject>Field theory</subject><subject>Membranes</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Polymer coatings</subject><subject>Polymers - chemistry</subject><subject>Random walk</subject><subject>Self consistent fields</subject><subject>Self-assembly</subject><subject>Simulation</subject><subject>Simulation models</subject><subject>Solutions</subject><subject>Solvation</subject><subject>Solvents - chemistry</subject><subject>Spatial distribution</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1r3DAQBmBRWppN0kP_QDDtJSk4HUm2Po4h5KOQkEt6FrY8bpXK1laSA_n31bKbBFroSZeHV-_MEPKRwikFwb-2p0CZbCW8ISsKStdSaHhLVgCM1lqA2CP7KT0AAJWseU_2uBANbUCuyNXt4rNLtvNYTWFA7-YfVRirFPySsRrcOC7Jhblyc5Wj632wvyob1sE_TRirCac-djOmQ_Ju7HzCD7v3gHy_vLg_v65v7q6-nZ_d1LZp2lxryuwIArDng7QKx14PWomhFKKUt6JRnaCSKqCaCWZ7BDX0ZUbsZMcZB35APm1zQ8rOJOsy2p82zDPabKgGpZq2oOMtWsfwe8GUzVRGRO9L07Akw6RopVRMs0I__0UfwhLnMsJGcSWpbnhRJ1tlY0gp4mjW0U1dfDIUzOYEpjW7ExR7tEtc-gmHF_m88wK-bMGmfZfLcl_MY4ivSWY9jP_D_379B3d2mnU</recordid><startdate>20230114</startdate><enddate>20230114</enddate><creator>Cooper, Anthony J.</creator><creator>Howard, Michael P.</creator><creator>Kadulkar, Sanket</creator><creator>Zhao, David</creator><creator>Delaney, Kris T.</creator><creator>Ganesan, Venkat</creator><creator>Truskett, Thomas M.</creator><creator>Fredrickson, Glenn H.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6716-9017</orcidid><orcidid>https://orcid.org/0000-0002-9561-4165</orcidid><orcidid>https://orcid.org/0000-0003-3899-5843</orcidid><orcidid>https://orcid.org/0000-0003-0356-1391</orcidid><orcidid>https://orcid.org/0000-0002-5185-6920</orcidid><orcidid>https://orcid.org/0000-0002-9807-8206</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-2834-7677</orcidid><orcidid>https://orcid.org/0000000298078206</orcidid><orcidid>https://orcid.org/0000000251856920</orcidid><orcidid>https://orcid.org/0000000295614165</orcidid><orcidid>https://orcid.org/0000000266076468</orcidid><orcidid>https://orcid.org/0000000338995843</orcidid><orcidid>https://orcid.org/0000000267169017</orcidid><orcidid>https://orcid.org/0000000228347677</orcidid><orcidid>https://orcid.org/0000000303561391</orcidid></search><sort><creationdate>20230114</creationdate><title>Multiscale modeling of solute diffusion in triblock copolymer membranes</title><author>Cooper, Anthony J. ; Howard, Michael P. ; Kadulkar, Sanket ; Zhao, David ; Delaney, Kris T. ; Ganesan, Venkat ; Truskett, Thomas M. ; Fredrickson, Glenn H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-912cf060eb3d7c8efb9d986d3661135648a61718019262cbe08db106ea7a32303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Block copolymers</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Diffusivity</topic><topic>Field theory</topic><topic>Membranes</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Polymer coatings</topic><topic>Polymers - chemistry</topic><topic>Random walk</topic><topic>Self consistent fields</topic><topic>Self-assembly</topic><topic>Simulation</topic><topic>Simulation models</topic><topic>Solutions</topic><topic>Solvation</topic><topic>Solvents - chemistry</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Anthony J.</creatorcontrib><creatorcontrib>Howard, Michael P.</creatorcontrib><creatorcontrib>Kadulkar, Sanket</creatorcontrib><creatorcontrib>Zhao, David</creatorcontrib><creatorcontrib>Delaney, Kris T.</creatorcontrib><creatorcontrib>Ganesan, Venkat</creatorcontrib><creatorcontrib>Truskett, Thomas M.</creatorcontrib><creatorcontrib>Fredrickson, Glenn H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Anthony J.</au><au>Howard, Michael P.</au><au>Kadulkar, Sanket</au><au>Zhao, David</au><au>Delaney, Kris T.</au><au>Ganesan, Venkat</au><au>Truskett, Thomas M.</au><au>Fredrickson, Glenn H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modeling of solute diffusion in triblock copolymer membranes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-01-14</date><risdate>2023</risdate><volume>158</volume><issue>2</issue><spage>024905</spage><epage>024905</epage><pages>024905-024905</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model’s predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36641407</pmid><doi>10.1063/5.0127570</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6716-9017</orcidid><orcidid>https://orcid.org/0000-0002-9561-4165</orcidid><orcidid>https://orcid.org/0000-0003-3899-5843</orcidid><orcidid>https://orcid.org/0000-0003-0356-1391</orcidid><orcidid>https://orcid.org/0000-0002-5185-6920</orcidid><orcidid>https://orcid.org/0000-0002-9807-8206</orcidid><orcidid>https://orcid.org/0000-0002-6607-6468</orcidid><orcidid>https://orcid.org/0000-0002-2834-7677</orcidid><orcidid>https://orcid.org/0000000298078206</orcidid><orcidid>https://orcid.org/0000000251856920</orcidid><orcidid>https://orcid.org/0000000295614165</orcidid><orcidid>https://orcid.org/0000000266076468</orcidid><orcidid>https://orcid.org/0000000338995843</orcidid><orcidid>https://orcid.org/0000000267169017</orcidid><orcidid>https://orcid.org/0000000228347677</orcidid><orcidid>https://orcid.org/0000000303561391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-01, Vol.158 (2), p.024905-024905 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2763871943 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Block copolymers Computer Simulation Diffusion Diffusivity Field theory Membranes Modelling Morphology Polymer coatings Polymers - chemistry Random walk Self consistent fields Self-assembly Simulation Simulation models Solutions Solvation Solvents - chemistry Spatial distribution |
title | Multiscale modeling of solute diffusion in triblock copolymer membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modeling%20of%20solute%20diffusion%20in%20triblock%20copolymer%20membranes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cooper,%20Anthony%20J.&rft.date=2023-01-14&rft.volume=158&rft.issue=2&rft.spage=024905&rft.epage=024905&rft.pages=024905-024905&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0127570&rft_dat=%3Cproquest_osti_%3E2765778292%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763871943&rft_id=info:pmid/36641407&rfr_iscdi=true |