A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image

Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Hauptverfasser: Zhu, Yang, Wang, Sen, Zhang, Yinhui, He, Zifen, Wang, Qingjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Zhu, Yang
Wang, Sen
Zhang, Yinhui
He, Zifen
Wang, Qingjian
description Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.
doi_str_mv 10.1109/TIM.2022.3222503
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2763734037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9953128</ieee_id><sourcerecordid>2763734037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEqVwR-JiiXOKl9iOj1XLEqmABIULB8sJ45LSxMVOQPx70kVcZjSa92aePoTOKRlRSvTVPL8fMcLYiDPGBOEHaECFUImWkh2iASE0S3Qq5DE6iXFJCFEyVQP0NsbTzq7wPNgmOh9qCPi5W0NIniD6VddWvsEP0P748In7Pc7rdfDfVbPA7QfgKbiqqbYi7_BrVQS7HfLaLuAUHTm7inC270P0cnM9n9wls8fbfDKeJSXTtE2K1HItgSmmS1G8U2BaWqZKrpUlDvr8RJSKWp5lMmUgnSRZWaSksCkVTpR8iC53d_tkXx3E1ix9F5r-pWFKcsVT0pchIjtVGXyMAZxZh6q24ddQYjYITY_QbBCaPcLecrGzVADwL9dacMoy_gdftWxl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763734037</pqid></control><display><type>article</type><title>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yang ; Wang, Sen ; Zhang, Yinhui ; He, Zifen ; Wang, Qingjian</creator><creatorcontrib>Zhu, Yang ; Wang, Sen ; Zhang, Yinhui ; He, Zifen ; Wang, Qingjian</creatorcontrib><description>Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3222503</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention Mechanism ; Blurring ; Body image ; Coders ; Computer Vision ; Displacement measurement ; Feature extraction ; Image acquisition ; Image quality ; Image reconstruction ; Image resolution ; Image Super-Resolution ; Measurement methods ; Modules ; Self image ; Superresolution ; Task analysis ; Transformer ; Transformers ; Vibration measurement ; Vibrations ; Vision ; Visual Vibration Measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</citedby><cites>FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</cites><orcidid>0000-0002-3997-6030 ; 0000-0002-0860-6520 ; 0000-0003-1259-8030 ; 0000-0002-8132-5899 ; 0000-0001-5493-3250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9953128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9953128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><creatorcontrib>Zhang, Yinhui</creatorcontrib><creatorcontrib>He, Zifen</creatorcontrib><creatorcontrib>Wang, Qingjian</creatorcontrib><title>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.</description><subject>Attention Mechanism</subject><subject>Blurring</subject><subject>Body image</subject><subject>Coders</subject><subject>Computer Vision</subject><subject>Displacement measurement</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image Super-Resolution</subject><subject>Measurement methods</subject><subject>Modules</subject><subject>Self image</subject><subject>Superresolution</subject><subject>Task analysis</subject><subject>Transformer</subject><subject>Transformers</subject><subject>Vibration measurement</subject><subject>Vibrations</subject><subject>Vision</subject><subject>Visual Vibration Measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQhS0EEqVwR-JiiXOKl9iOj1XLEqmABIULB8sJ45LSxMVOQPx70kVcZjSa92aePoTOKRlRSvTVPL8fMcLYiDPGBOEHaECFUImWkh2iASE0S3Qq5DE6iXFJCFEyVQP0NsbTzq7wPNgmOh9qCPi5W0NIniD6VddWvsEP0P748In7Pc7rdfDfVbPA7QfgKbiqqbYi7_BrVQS7HfLaLuAUHTm7inC270P0cnM9n9wls8fbfDKeJSXTtE2K1HItgSmmS1G8U2BaWqZKrpUlDvr8RJSKWp5lMmUgnSRZWaSksCkVTpR8iC53d_tkXx3E1ix9F5r-pWFKcsVT0pchIjtVGXyMAZxZh6q24ddQYjYITY_QbBCaPcLecrGzVADwL9dacMoy_gdftWxl</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhu, Yang</creator><creator>Wang, Sen</creator><creator>Zhang, Yinhui</creator><creator>He, Zifen</creator><creator>Wang, Qingjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3997-6030</orcidid><orcidid>https://orcid.org/0000-0002-0860-6520</orcidid><orcidid>https://orcid.org/0000-0003-1259-8030</orcidid><orcidid>https://orcid.org/0000-0002-8132-5899</orcidid><orcidid>https://orcid.org/0000-0001-5493-3250</orcidid></search><sort><creationdate>20230101</creationdate><title>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</title><author>Zhu, Yang ; Wang, Sen ; Zhang, Yinhui ; He, Zifen ; Wang, Qingjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention Mechanism</topic><topic>Blurring</topic><topic>Body image</topic><topic>Coders</topic><topic>Computer Vision</topic><topic>Displacement measurement</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image Super-Resolution</topic><topic>Measurement methods</topic><topic>Modules</topic><topic>Self image</topic><topic>Superresolution</topic><topic>Task analysis</topic><topic>Transformer</topic><topic>Transformers</topic><topic>Vibration measurement</topic><topic>Vibrations</topic><topic>Vision</topic><topic>Visual Vibration Measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><creatorcontrib>Zhang, Yinhui</creatorcontrib><creatorcontrib>He, Zifen</creatorcontrib><creatorcontrib>Wang, Qingjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yang</au><au>Wang, Sen</au><au>Zhang, Yinhui</au><au>He, Zifen</au><au>Wang, Qingjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3222503</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3997-6030</orcidid><orcidid>https://orcid.org/0000-0002-0860-6520</orcidid><orcidid>https://orcid.org/0000-0003-1259-8030</orcidid><orcidid>https://orcid.org/0000-0002-8132-5899</orcidid><orcidid>https://orcid.org/0000-0001-5493-3250</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2763734037
source IEEE Electronic Library (IEL)
subjects Attention Mechanism
Blurring
Body image
Coders
Computer Vision
Displacement measurement
Feature extraction
Image acquisition
Image quality
Image reconstruction
Image resolution
Image Super-Resolution
Measurement methods
Modules
Self image
Superresolution
Task analysis
Transformer
Transformers
Vibration measurement
Vibrations
Vision
Visual Vibration Measurement
title A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Transformer%20Super-Resolution%20Network%20for%20Improving%20the%20Definition%20of%20Vibration%20Image&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhu,%20Yang&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3222503&rft_dat=%3Cproquest_RIE%3E2763734037%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763734037&rft_id=info:pmid/&rft_ieee_id=9953128&rfr_iscdi=true