A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image
Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, whic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Zhu, Yang Wang, Sen Zhang, Yinhui He, Zifen Wang, Qingjian |
description | Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement. |
doi_str_mv | 10.1109/TIM.2022.3222503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2763734037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9953128</ieee_id><sourcerecordid>2763734037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEqVwR-JiiXOKl9iOj1XLEqmABIULB8sJ45LSxMVOQPx70kVcZjSa92aePoTOKRlRSvTVPL8fMcLYiDPGBOEHaECFUImWkh2iASE0S3Qq5DE6iXFJCFEyVQP0NsbTzq7wPNgmOh9qCPi5W0NIniD6VddWvsEP0P748In7Pc7rdfDfVbPA7QfgKbiqqbYi7_BrVQS7HfLaLuAUHTm7inC270P0cnM9n9wls8fbfDKeJSXTtE2K1HItgSmmS1G8U2BaWqZKrpUlDvr8RJSKWp5lMmUgnSRZWaSksCkVTpR8iC53d_tkXx3E1ix9F5r-pWFKcsVT0pchIjtVGXyMAZxZh6q24ddQYjYITY_QbBCaPcLecrGzVADwL9dacMoy_gdftWxl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763734037</pqid></control><display><type>article</type><title>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Yang ; Wang, Sen ; Zhang, Yinhui ; He, Zifen ; Wang, Qingjian</creator><creatorcontrib>Zhu, Yang ; Wang, Sen ; Zhang, Yinhui ; He, Zifen ; Wang, Qingjian</creatorcontrib><description>Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3222503</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention Mechanism ; Blurring ; Body image ; Coders ; Computer Vision ; Displacement measurement ; Feature extraction ; Image acquisition ; Image quality ; Image reconstruction ; Image resolution ; Image Super-Resolution ; Measurement methods ; Modules ; Self image ; Superresolution ; Task analysis ; Transformer ; Transformers ; Vibration measurement ; Vibrations ; Vision ; Visual Vibration Measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</citedby><cites>FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</cites><orcidid>0000-0002-3997-6030 ; 0000-0002-0860-6520 ; 0000-0003-1259-8030 ; 0000-0002-8132-5899 ; 0000-0001-5493-3250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9953128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9953128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><creatorcontrib>Zhang, Yinhui</creatorcontrib><creatorcontrib>He, Zifen</creatorcontrib><creatorcontrib>Wang, Qingjian</creatorcontrib><title>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.</description><subject>Attention Mechanism</subject><subject>Blurring</subject><subject>Body image</subject><subject>Coders</subject><subject>Computer Vision</subject><subject>Displacement measurement</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Image Super-Resolution</subject><subject>Measurement methods</subject><subject>Modules</subject><subject>Self image</subject><subject>Superresolution</subject><subject>Task analysis</subject><subject>Transformer</subject><subject>Transformers</subject><subject>Vibration measurement</subject><subject>Vibrations</subject><subject>Vision</subject><subject>Visual Vibration Measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQhS0EEqVwR-JiiXOKl9iOj1XLEqmABIULB8sJ45LSxMVOQPx70kVcZjSa92aePoTOKRlRSvTVPL8fMcLYiDPGBOEHaECFUImWkh2iASE0S3Qq5DE6iXFJCFEyVQP0NsbTzq7wPNgmOh9qCPi5W0NIniD6VddWvsEP0P748In7Pc7rdfDfVbPA7QfgKbiqqbYi7_BrVQS7HfLaLuAUHTm7inC270P0cnM9n9wls8fbfDKeJSXTtE2K1HItgSmmS1G8U2BaWqZKrpUlDvr8RJSKWp5lMmUgnSRZWaSksCkVTpR8iC53d_tkXx3E1ix9F5r-pWFKcsVT0pchIjtVGXyMAZxZh6q24ddQYjYITY_QbBCaPcLecrGzVADwL9dacMoy_gdftWxl</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhu, Yang</creator><creator>Wang, Sen</creator><creator>Zhang, Yinhui</creator><creator>He, Zifen</creator><creator>Wang, Qingjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3997-6030</orcidid><orcidid>https://orcid.org/0000-0002-0860-6520</orcidid><orcidid>https://orcid.org/0000-0003-1259-8030</orcidid><orcidid>https://orcid.org/0000-0002-8132-5899</orcidid><orcidid>https://orcid.org/0000-0001-5493-3250</orcidid></search><sort><creationdate>20230101</creationdate><title>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</title><author>Zhu, Yang ; Wang, Sen ; Zhang, Yinhui ; He, Zifen ; Wang, Qingjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4a396e2729c5bd1e296a27c397a0fe66205c71a388642e6f608cb40ba415f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention Mechanism</topic><topic>Blurring</topic><topic>Body image</topic><topic>Coders</topic><topic>Computer Vision</topic><topic>Displacement measurement</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Image Super-Resolution</topic><topic>Measurement methods</topic><topic>Modules</topic><topic>Self image</topic><topic>Superresolution</topic><topic>Task analysis</topic><topic>Transformer</topic><topic>Transformers</topic><topic>Vibration measurement</topic><topic>Vibrations</topic><topic>Vision</topic><topic>Visual Vibration Measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yang</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><creatorcontrib>Zhang, Yinhui</creatorcontrib><creatorcontrib>He, Zifen</creatorcontrib><creatorcontrib>Wang, Qingjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yang</au><au>Wang, Sen</au><au>Zhang, Yinhui</au><au>He, Zifen</au><au>Wang, Qingjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Visual measurement methods are gaining more and more attention in the field of structural body health monitoring due to the advantages of long-range, non-contact, and multi-point monitoring. However, the imaging system is usually affected by many factors such as distortion, blurring, and noise, which leads to displacement measurement errors after the degradation of the acquired image quality. Therefore, in this paper, we propose a structural body image super-resolution network based on dual Transformer architecture to improve the clarity of the collected structural body vibration displacement image to better capture the vibration displacement information of the target. Meanwhile, we design a dual Transformer block based on Encoder-Decoder architecture for the characteristics of vision-based structural body vibration displacement measurement tasks to better extract structural body image details and edge feature information. In this module, we introduce two different Transformers. In addition, modules based on Encoder-Decoder architecture focus more on the input and output image information and often ignore the feature information in different layers. Therefore, we introduce attention mechanism in the network and interact with the feature information in different layers of Encoder-Decoder architecture to obtain a better structural body image super-resolution effect. After comparison tests with the rest of the latest and most classical networks as well as the current optimal networks, it is shown that our network obtains excellent image reconstruction results under different structural body vibration image dataset, which also provides a strong guarantee for the task of accurate vision-based structural body vibration displacement measurement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3222503</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3997-6030</orcidid><orcidid>https://orcid.org/0000-0002-0860-6520</orcidid><orcidid>https://orcid.org/0000-0003-1259-8030</orcidid><orcidid>https://orcid.org/0000-0002-8132-5899</orcidid><orcidid>https://orcid.org/0000-0001-5493-3250</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2763734037 |
source | IEEE Electronic Library (IEL) |
subjects | Attention Mechanism Blurring Body image Coders Computer Vision Displacement measurement Feature extraction Image acquisition Image quality Image reconstruction Image resolution Image Super-Resolution Measurement methods Modules Self image Superresolution Task analysis Transformer Transformers Vibration measurement Vibrations Vision Visual Vibration Measurement |
title | A Dual Transformer Super-Resolution Network for Improving the Definition of Vibration Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual%20Transformer%20Super-Resolution%20Network%20for%20Improving%20the%20Definition%20of%20Vibration%20Image&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhu,%20Yang&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3222503&rft_dat=%3Cproquest_RIE%3E2763734037%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763734037&rft_id=info:pmid/&rft_ieee_id=9953128&rfr_iscdi=true |