Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method
Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain therma...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2023-02, Vol.59 (2), p.203-213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 203 |
container_title | Heat and mass transfer |
container_volume | 59 |
creator | Meng, Guangfan Chen, Jiao Bao, Wenlong Wang, Zhaoliang |
description | Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease. |
doi_str_mv | 10.1007/s00231-022-03243-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2763453170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763453170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c59d27caf7faf88bb55d90c483632b48fc6d7f87e0edbfd5ae0061fdc8645a943</originalsourceid><addsrcrecordid>eNp9kDlOAzEUhi0EEiFwASpL1APeZjwpUcQmIdFAbXm8EEcTO7E9RKHiBhTckJNgEgQd1Svev-kD4BSjc4wQv0gIEYorREiFKGG0Wu-BEWaUVBi3eB-M0ITxijOMD8FRSvMibxihI_A-nckoVTbRvcrsgofBwjwzcSF72IXBaxk3MJrkUpZeGSgzTKF3-vPto3erwWnofHFbWX6dTEbDkqGCz84PYUhwLV8MtNGsBuPVBuqwkM7_NkRje6O2vQuTZ0EfgwMr-2ROfu4YPF1fPU5vq_uHm7vp5X2lCEK5UvVEE66k5Vbatu26utYTpFhLG0o61lrVaG5bbpDRndW1NAg12GrVNqyWE0bH4GyXu4yhTEtZzMMQfakUhDeU1RRzVFRkp1IxpFTGimV0i0JEYCS-wYsdeFHAiy14sS4mujOlIvbPJv5F_-P6AorPjHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763453170</pqid></control><display><type>article</type><title>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</title><source>SpringerLink Journals</source><creator>Meng, Guangfan ; Chen, Jiao ; Bao, Wenlong ; Wang, Zhaoliang</creator><creatorcontrib>Meng, Guangfan ; Chen, Jiao ; Bao, Wenlong ; Wang, Zhaoliang</creatorcontrib><description>Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-022-03243-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Contact angle ; Continuous radiation ; Coupled modes ; Coupling (molecular) ; Engineering ; Engineering Thermodynamics ; Ethanol ; Frequency domain analysis ; Heat and Mass Transfer ; Heat conductivity ; Heat transfer ; Hexadecane ; Industrial Chemistry/Chemical Engineering ; Liquid-solid interfaces ; Liquids ; Molecular dynamics ; Original Article ; Thermal conductivity ; Thermal resistance ; Thermal simulation ; Thermodynamic properties ; Thermodynamics ; Transmission lines ; Transport properties ; Wave reflection ; Wettability</subject><ispartof>Heat and mass transfer, 2023-02, Vol.59 (2), p.203-213</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c59d27caf7faf88bb55d90c483632b48fc6d7f87e0edbfd5ae0061fdc8645a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-022-03243-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-022-03243-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meng, Guangfan</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Bao, Wenlong</creatorcontrib><creatorcontrib>Wang, Zhaoliang</creatorcontrib><title>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.</description><subject>Aluminum</subject><subject>Contact angle</subject><subject>Continuous radiation</subject><subject>Coupled modes</subject><subject>Coupling (molecular)</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Ethanol</subject><subject>Frequency domain analysis</subject><subject>Heat and Mass Transfer</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hexadecane</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Liquid-solid interfaces</subject><subject>Liquids</subject><subject>Molecular dynamics</subject><subject>Original Article</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transmission lines</subject><subject>Transport properties</subject><subject>Wave reflection</subject><subject>Wettability</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDlOAzEUhi0EEiFwASpL1APeZjwpUcQmIdFAbXm8EEcTO7E9RKHiBhTckJNgEgQd1Svev-kD4BSjc4wQv0gIEYorREiFKGG0Wu-BEWaUVBi3eB-M0ITxijOMD8FRSvMibxihI_A-nckoVTbRvcrsgofBwjwzcSF72IXBaxk3MJrkUpZeGSgzTKF3-vPto3erwWnofHFbWX6dTEbDkqGCz84PYUhwLV8MtNGsBuPVBuqwkM7_NkRje6O2vQuTZ0EfgwMr-2ROfu4YPF1fPU5vq_uHm7vp5X2lCEK5UvVEE66k5Vbatu26utYTpFhLG0o61lrVaG5bbpDRndW1NAg12GrVNqyWE0bH4GyXu4yhTEtZzMMQfakUhDeU1RRzVFRkp1IxpFTGimV0i0JEYCS-wYsdeFHAiy14sS4mujOlIvbPJv5F_-P6AorPjHc</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Meng, Guangfan</creator><creator>Chen, Jiao</creator><creator>Bao, Wenlong</creator><creator>Wang, Zhaoliang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</title><author>Meng, Guangfan ; Chen, Jiao ; Bao, Wenlong ; Wang, Zhaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c59d27caf7faf88bb55d90c483632b48fc6d7f87e0edbfd5ae0061fdc8645a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Contact angle</topic><topic>Continuous radiation</topic><topic>Coupled modes</topic><topic>Coupling (molecular)</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Ethanol</topic><topic>Frequency domain analysis</topic><topic>Heat and Mass Transfer</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hexadecane</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Liquid-solid interfaces</topic><topic>Liquids</topic><topic>Molecular dynamics</topic><topic>Original Article</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transmission lines</topic><topic>Transport properties</topic><topic>Wave reflection</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Guangfan</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Bao, Wenlong</creatorcontrib><creatorcontrib>Wang, Zhaoliang</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Guangfan</au><au>Chen, Jiao</au><au>Bao, Wenlong</au><au>Wang, Zhaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-022-03243-w</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7411 |
ispartof | Heat and mass transfer, 2023-02, Vol.59 (2), p.203-213 |
issn | 0947-7411 1432-1181 |
language | eng |
recordid | cdi_proquest_journals_2763453170 |
source | SpringerLink Journals |
subjects | Aluminum Contact angle Continuous radiation Coupled modes Coupling (molecular) Engineering Engineering Thermodynamics Ethanol Frequency domain analysis Heat and Mass Transfer Heat conductivity Heat transfer Hexadecane Industrial Chemistry/Chemical Engineering Liquid-solid interfaces Liquids Molecular dynamics Original Article Thermal conductivity Thermal resistance Thermal simulation Thermodynamic properties Thermodynamics Transmission lines Transport properties Wave reflection Wettability |
title | Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20thermal%20boundary%20resistance%20at%20solid%E2%80%93liquid%20interface%20based%20on%20continuous%20wave%20frequency%20domain%20thermal%20reflection%20method&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Meng,%20Guangfan&rft.date=2023-02-01&rft.volume=59&rft.issue=2&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-022-03243-w&rft_dat=%3Cproquest_cross%3E2763453170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763453170&rft_id=info:pmid/&rfr_iscdi=true |