Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method

Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2023-02, Vol.59 (2), p.203-213
Hauptverfasser: Meng, Guangfan, Chen, Jiao, Bao, Wenlong, Wang, Zhaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 2
container_start_page 203
container_title Heat and mass transfer
container_volume 59
creator Meng, Guangfan
Chen, Jiao
Bao, Wenlong
Wang, Zhaoliang
description Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.
doi_str_mv 10.1007/s00231-022-03243-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2763453170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763453170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c59d27caf7faf88bb55d90c483632b48fc6d7f87e0edbfd5ae0061fdc8645a943</originalsourceid><addsrcrecordid>eNp9kDlOAzEUhi0EEiFwASpL1APeZjwpUcQmIdFAbXm8EEcTO7E9RKHiBhTckJNgEgQd1Svev-kD4BSjc4wQv0gIEYorREiFKGG0Wu-BEWaUVBi3eB-M0ITxijOMD8FRSvMibxihI_A-nckoVTbRvcrsgofBwjwzcSF72IXBaxk3MJrkUpZeGSgzTKF3-vPto3erwWnofHFbWX6dTEbDkqGCz84PYUhwLV8MtNGsBuPVBuqwkM7_NkRje6O2vQuTZ0EfgwMr-2ROfu4YPF1fPU5vq_uHm7vp5X2lCEK5UvVEE66k5Vbatu26utYTpFhLG0o61lrVaG5bbpDRndW1NAg12GrVNqyWE0bH4GyXu4yhTEtZzMMQfakUhDeU1RRzVFRkp1IxpFTGimV0i0JEYCS-wYsdeFHAiy14sS4mujOlIvbPJv5F_-P6AorPjHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763453170</pqid></control><display><type>article</type><title>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</title><source>SpringerLink Journals</source><creator>Meng, Guangfan ; Chen, Jiao ; Bao, Wenlong ; Wang, Zhaoliang</creator><creatorcontrib>Meng, Guangfan ; Chen, Jiao ; Bao, Wenlong ; Wang, Zhaoliang</creatorcontrib><description>Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-022-03243-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Contact angle ; Continuous radiation ; Coupled modes ; Coupling (molecular) ; Engineering ; Engineering Thermodynamics ; Ethanol ; Frequency domain analysis ; Heat and Mass Transfer ; Heat conductivity ; Heat transfer ; Hexadecane ; Industrial Chemistry/Chemical Engineering ; Liquid-solid interfaces ; Liquids ; Molecular dynamics ; Original Article ; Thermal conductivity ; Thermal resistance ; Thermal simulation ; Thermodynamic properties ; Thermodynamics ; Transmission lines ; Transport properties ; Wave reflection ; Wettability</subject><ispartof>Heat and mass transfer, 2023-02, Vol.59 (2), p.203-213</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c59d27caf7faf88bb55d90c483632b48fc6d7f87e0edbfd5ae0061fdc8645a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-022-03243-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-022-03243-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meng, Guangfan</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Bao, Wenlong</creatorcontrib><creatorcontrib>Wang, Zhaoliang</creatorcontrib><title>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.</description><subject>Aluminum</subject><subject>Contact angle</subject><subject>Continuous radiation</subject><subject>Coupled modes</subject><subject>Coupling (molecular)</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Ethanol</subject><subject>Frequency domain analysis</subject><subject>Heat and Mass Transfer</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hexadecane</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Liquid-solid interfaces</subject><subject>Liquids</subject><subject>Molecular dynamics</subject><subject>Original Article</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transmission lines</subject><subject>Transport properties</subject><subject>Wave reflection</subject><subject>Wettability</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDlOAzEUhi0EEiFwASpL1APeZjwpUcQmIdFAbXm8EEcTO7E9RKHiBhTckJNgEgQd1Svev-kD4BSjc4wQv0gIEYorREiFKGG0Wu-BEWaUVBi3eB-M0ITxijOMD8FRSvMibxihI_A-nckoVTbRvcrsgofBwjwzcSF72IXBaxk3MJrkUpZeGSgzTKF3-vPto3erwWnofHFbWX6dTEbDkqGCz84PYUhwLV8MtNGsBuPVBuqwkM7_NkRje6O2vQuTZ0EfgwMr-2ROfu4YPF1fPU5vq_uHm7vp5X2lCEK5UvVEE66k5Vbatu26utYTpFhLG0o61lrVaG5bbpDRndW1NAg12GrVNqyWE0bH4GyXu4yhTEtZzMMQfakUhDeU1RRzVFRkp1IxpFTGimV0i0JEYCS-wYsdeFHAiy14sS4mujOlIvbPJv5F_-P6AorPjHc</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Meng, Guangfan</creator><creator>Chen, Jiao</creator><creator>Bao, Wenlong</creator><creator>Wang, Zhaoliang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</title><author>Meng, Guangfan ; Chen, Jiao ; Bao, Wenlong ; Wang, Zhaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c59d27caf7faf88bb55d90c483632b48fc6d7f87e0edbfd5ae0061fdc8645a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Contact angle</topic><topic>Continuous radiation</topic><topic>Coupled modes</topic><topic>Coupling (molecular)</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Ethanol</topic><topic>Frequency domain analysis</topic><topic>Heat and Mass Transfer</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hexadecane</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Liquid-solid interfaces</topic><topic>Liquids</topic><topic>Molecular dynamics</topic><topic>Original Article</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transmission lines</topic><topic>Transport properties</topic><topic>Wave reflection</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Guangfan</creatorcontrib><creatorcontrib>Chen, Jiao</creatorcontrib><creatorcontrib>Bao, Wenlong</creatorcontrib><creatorcontrib>Wang, Zhaoliang</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Guangfan</au><au>Chen, Jiao</au><au>Bao, Wenlong</au><au>Wang, Zhaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>59</volume><issue>2</issue><spage>203</spage><epage>213</epage><pages>203-213</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Thermal transport properties of the solid–liquid interface continue to be in urgent research need with the widespread use of nanoscale fluid cooling, particle-assisted therapy, and lubrication technologies. In this paper, we developed an experimental system of Continuous wave frequency domain thermal reflection for measuring the thermal conductivity of liquids and interfacial thermal conductance of the solid–liquid and a two-way heat transport model based on the transmission line theory model, and the thermal conductivity, the interfacial thermal conductance and the contact angle of liquids on the surface of the aluminum sensing layer were measured for water, ethanol and hexadecane. In addition, we simulated the thermal transport at the Al /water interface by molecular dynamics with simulation results agreeing with experimental results. The results show that solid/liquid interface thermal transport depends on the transverse mode coupling of liquid wettability, increase the force interaction between solid and liquid molecules which couples the energy of low-frequency phonons to the liquid, thus making the interfacial thermal conductance decrease.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-022-03243-w</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2023-02, Vol.59 (2), p.203-213
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_2763453170
source SpringerLink Journals
subjects Aluminum
Contact angle
Continuous radiation
Coupled modes
Coupling (molecular)
Engineering
Engineering Thermodynamics
Ethanol
Frequency domain analysis
Heat and Mass Transfer
Heat conductivity
Heat transfer
Hexadecane
Industrial Chemistry/Chemical Engineering
Liquid-solid interfaces
Liquids
Molecular dynamics
Original Article
Thermal conductivity
Thermal resistance
Thermal simulation
Thermodynamic properties
Thermodynamics
Transmission lines
Transport properties
Wave reflection
Wettability
title Characterization of thermal boundary resistance at solid–liquid interface based on continuous wave frequency domain thermal reflection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20thermal%20boundary%20resistance%20at%20solid%E2%80%93liquid%20interface%20based%20on%20continuous%20wave%20frequency%20domain%20thermal%20reflection%20method&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Meng,%20Guangfan&rft.date=2023-02-01&rft.volume=59&rft.issue=2&rft.spage=203&rft.epage=213&rft.pages=203-213&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-022-03243-w&rft_dat=%3Cproquest_cross%3E2763453170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763453170&rft_id=info:pmid/&rfr_iscdi=true