QUASICONTINUITY, NONATTRACTING POINTS, DISTRIBUTIVE CHAOS AND RESISTANCE TO DISRUPTIONS
We prove that any continuous function can be locally approximated at a fixed point $x_{0}$ by an uncountable family resistant to disruptions by the family of continuous functions for which $x_{0}$ is a fixed point. In that context, we also consider the property of quasicontinuity.
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2023-02, Vol.107 (1), p.102-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 1 |
container_start_page | 102 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 107 |
creator | KUCHARSKA, MELANIA PAWLAK, RYSZARD J. |
description | We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity. |
doi_str_mv | 10.1017/S0004972722001101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2763166199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972722001101</cupid><sourcerecordid>2763166199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1149-15233a25b4b54d4633c880cb15017fa7cb8bb2ae68b269dbd5203037aa525cd83</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPE2oAfcZyMJg2tpcopsQNiiuwkRa0oLQkd-Pc4KhIDYjrdfY-7-wC4xugWI8zvNEIoTDjhhCCE_egEjDBnLMARpadgNMDBgJ-Di77f-I4xEo_A82MptExzZaQqpXmZQJUrYUwhUj-ZwWUuldETOJXaFPK-NPIpg-lc5BoKNYVFpj0gVJpBkw-kolwamSt9Cc5W9q1vr37qGJQPmUnnwSKfyVQsghrjMAkwI5RawlzoWNiE_tY6jlHtMPNPrSyvXewcsW0UOxIljWsYQRRRbi0jrG5iOgY3R999t_s4tP1ntdkdune_siI8ojiKcJJ4Fj6y6m7X9127qvbdemu7rwqjasiv-pOf19Afjd26bt28tr_W_6u-AQoWaQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763166199</pqid></control><display><type>article</type><title>QUASICONTINUITY, NONATTRACTING POINTS, DISTRIBUTIVE CHAOS AND RESISTANCE TO DISRUPTIONS</title><source>AUTh Library subscriptions: Cambridge Journals Online</source><creator>KUCHARSKA, MELANIA ; PAWLAK, RYSZARD J.</creator><creatorcontrib>KUCHARSKA, MELANIA ; PAWLAK, RYSZARD J.</creatorcontrib><description>We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972722001101</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Continuity (mathematics) ; Dynamical systems ; Fixed points (mathematics)</subject><ispartof>Bulletin of the Australian Mathematical Society, 2023-02, Vol.107 (1), p.102-111</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1149-15233a25b4b54d4633c880cb15017fa7cb8bb2ae68b269dbd5203037aa525cd83</cites><orcidid>0000-0002-1027-8298 ; 0000-0002-5156-4215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972722001101/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>KUCHARSKA, MELANIA</creatorcontrib><creatorcontrib>PAWLAK, RYSZARD J.</creatorcontrib><title>QUASICONTINUITY, NONATTRACTING POINTS, DISTRIBUTIVE CHAOS AND RESISTANCE TO DISRUPTIONS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.</description><subject>Continuity (mathematics)</subject><subject>Dynamical systems</subject><subject>Fixed points (mathematics)</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UDtPwzAQthBIlMIPYLPE2oAfcZyMJg2tpcopsQNiiuwkRa0oLQkd-Pc4KhIDYjrdfY-7-wC4xugWI8zvNEIoTDjhhCCE_egEjDBnLMARpadgNMDBgJ-Di77f-I4xEo_A82MptExzZaQqpXmZQJUrYUwhUj-ZwWUuldETOJXaFPK-NPIpg-lc5BoKNYVFpj0gVJpBkw-kolwamSt9Cc5W9q1vr37qGJQPmUnnwSKfyVQsghrjMAkwI5RawlzoWNiE_tY6jlHtMPNPrSyvXewcsW0UOxIljWsYQRRRbi0jrG5iOgY3R999t_s4tP1ntdkdune_siI8ojiKcJJ4Fj6y6m7X9127qvbdemu7rwqjasiv-pOf19Afjd26bt28tr_W_6u-AQoWaQc</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>KUCHARSKA, MELANIA</creator><creator>PAWLAK, RYSZARD J.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1027-8298</orcidid><orcidid>https://orcid.org/0000-0002-5156-4215</orcidid></search><sort><creationdate>202302</creationdate><title>QUASICONTINUITY, NONATTRACTING POINTS, DISTRIBUTIVE CHAOS AND RESISTANCE TO DISRUPTIONS</title><author>KUCHARSKA, MELANIA ; PAWLAK, RYSZARD J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1149-15233a25b4b54d4633c880cb15017fa7cb8bb2ae68b269dbd5203037aa525cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuity (mathematics)</topic><topic>Dynamical systems</topic><topic>Fixed points (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUCHARSKA, MELANIA</creatorcontrib><creatorcontrib>PAWLAK, RYSZARD J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUCHARSKA, MELANIA</au><au>PAWLAK, RYSZARD J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QUASICONTINUITY, NONATTRACTING POINTS, DISTRIBUTIVE CHAOS AND RESISTANCE TO DISRUPTIONS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2023-02</date><risdate>2023</risdate><volume>107</volume><issue>1</issue><spage>102</spage><epage>111</epage><pages>102-111</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We prove that any continuous function can be locally approximated at a fixed point
$x_{0}$
by an uncountable family resistant to disruptions by the family of continuous functions for which
$x_{0}$
is a fixed point. In that context, we also consider the property of quasicontinuity.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972722001101</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1027-8298</orcidid><orcidid>https://orcid.org/0000-0002-5156-4215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2023-02, Vol.107 (1), p.102-111 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2763166199 |
source | AUTh Library subscriptions: Cambridge Journals Online |
subjects | Continuity (mathematics) Dynamical systems Fixed points (mathematics) |
title | QUASICONTINUITY, NONATTRACTING POINTS, DISTRIBUTIVE CHAOS AND RESISTANCE TO DISRUPTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QUASICONTINUITY,%20NONATTRACTING%20POINTS,%20DISTRIBUTIVE%20CHAOS%20AND%20RESISTANCE%20TO%20DISRUPTIONS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=KUCHARSKA,%20MELANIA&rft.date=2023-02&rft.volume=107&rft.issue=1&rft.spage=102&rft.epage=111&rft.pages=102-111&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972722001101&rft_dat=%3Cproquest_cross%3E2763166199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763166199&rft_id=info:pmid/&rft_cupid=10_1017_S0004972722001101&rfr_iscdi=true |