Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services

The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2023-02, Vol.37 (2), p.380-402
Hauptverfasser: Xu, Mingyue, Yue, Peng, Yu, Fan, Yang, Can, Zhang, Mingda, Li, Shangcheng, Li, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 2
container_start_page 380
container_title International journal of geographical information science : IJGIS
container_volume 37
creator Xu, Mingyue
Yue, Peng
Yu, Fan
Yang, Can
Zhang, Mingda
Li, Shangcheng
Li, Hao
description The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income.
doi_str_mv 10.1080/13658816.2022.2119477
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2763157098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763157098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a9e8bbc864893d04f47dfae17fc962fc0364417aea034627df854c2518e117913</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpJyBFYu3iRxI7O1DFSypiA2vLdcatUWKXcVrUvydpYctqXvfekU6WXTM6Z1TRWyaqUilWzTnlfM4Zqwspz7LJsOdEUCXPj31JRtFlNkvJrygXqlZKlpOse921vSdmDaHPEXxwES1049SCweDDOu9jvgveHfKIDSDpTG83496EJt_DxtsWCMI2Jt_7eHT4kKNvgGyMb8c5Ae69hXSVXTjTJpj91mn28fjwvngmy7enl8X9klghVE9MDWq1sqoqVC0aWrhCNs4Ak87WFXeWiqoomDRgqCgqPhxVWVheMgWMyZqJaXZzyt1i_NpB6vVn3GEYXmouK8FKSWs1qMqTymJMCcHpLfrO4EEzqke4-g-uHuHqX7iD7-7kO9LqzHfEttG9ObQRHZpgfdLi_4gfM5eCNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763157098</pqid></control><display><type>article</type><title>Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services</title><source>Taylor &amp; Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xu, Mingyue ; Yue, Peng ; Yu, Fan ; Yang, Can ; Zhang, Mingda ; Li, Shangcheng ; Li, Hao</creator><creatorcontrib>Xu, Mingyue ; Yue, Peng ; Yu, Fan ; Yang, Can ; Zhang, Mingda ; Li, Shangcheng ; Li, Hao</creatorcontrib><description>The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2022.2119477</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Car sharing ; Deep learning ; Idling ; Learning ; Machine learning ; Markov processes ; Matching ; multi-agent reinforcement learning ; Multiagent systems ; Order matching ; Reagents ; Reinforcement ; Rejection rate ; Transportation services ; vehicle repositioning ; Vehicles</subject><ispartof>International journal of geographical information science : IJGIS, 2023-02, Vol.37 (2), p.380-402</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a9e8bbc864893d04f47dfae17fc962fc0364417aea034627df854c2518e117913</citedby><cites>FETCH-LOGICAL-c338t-a9e8bbc864893d04f47dfae17fc962fc0364417aea034627df854c2518e117913</cites><orcidid>0000-0001-5361-6034 ; 0000-0003-3006-4542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2022.2119477$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2022.2119477$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Xu, Mingyue</creatorcontrib><creatorcontrib>Yue, Peng</creatorcontrib><creatorcontrib>Yu, Fan</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Zhang, Mingda</creatorcontrib><creatorcontrib>Li, Shangcheng</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><title>Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services</title><title>International journal of geographical information science : IJGIS</title><description>The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income.</description><subject>Car sharing</subject><subject>Deep learning</subject><subject>Idling</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Matching</subject><subject>multi-agent reinforcement learning</subject><subject>Multiagent systems</subject><subject>Order matching</subject><subject>Reagents</subject><subject>Reinforcement</subject><subject>Rejection rate</subject><subject>Transportation services</subject><subject>vehicle repositioning</subject><subject>Vehicles</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpJyBFYu3iRxI7O1DFSypiA2vLdcatUWKXcVrUvydpYctqXvfekU6WXTM6Z1TRWyaqUilWzTnlfM4Zqwspz7LJsOdEUCXPj31JRtFlNkvJrygXqlZKlpOse921vSdmDaHPEXxwES1049SCweDDOu9jvgveHfKIDSDpTG83496EJt_DxtsWCMI2Jt_7eHT4kKNvgGyMb8c5Ae69hXSVXTjTJpj91mn28fjwvngmy7enl8X9klghVE9MDWq1sqoqVC0aWrhCNs4Ak87WFXeWiqoomDRgqCgqPhxVWVheMgWMyZqJaXZzyt1i_NpB6vVn3GEYXmouK8FKSWs1qMqTymJMCcHpLfrO4EEzqke4-g-uHuHqX7iD7-7kO9LqzHfEttG9ObQRHZpgfdLi_4gfM5eCNA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Xu, Mingyue</creator><creator>Yue, Peng</creator><creator>Yu, Fan</creator><creator>Yang, Can</creator><creator>Zhang, Mingda</creator><creator>Li, Shangcheng</creator><creator>Li, Hao</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5361-6034</orcidid><orcidid>https://orcid.org/0000-0003-3006-4542</orcidid></search><sort><creationdate>20230201</creationdate><title>Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services</title><author>Xu, Mingyue ; Yue, Peng ; Yu, Fan ; Yang, Can ; Zhang, Mingda ; Li, Shangcheng ; Li, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a9e8bbc864893d04f47dfae17fc962fc0364417aea034627df854c2518e117913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Car sharing</topic><topic>Deep learning</topic><topic>Idling</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Matching</topic><topic>multi-agent reinforcement learning</topic><topic>Multiagent systems</topic><topic>Order matching</topic><topic>Reagents</topic><topic>Reinforcement</topic><topic>Rejection rate</topic><topic>Transportation services</topic><topic>vehicle repositioning</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mingyue</creatorcontrib><creatorcontrib>Yue, Peng</creatorcontrib><creatorcontrib>Yu, Fan</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Zhang, Mingda</creatorcontrib><creatorcontrib>Li, Shangcheng</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mingyue</au><au>Yue, Peng</au><au>Yu, Fan</au><au>Yang, Can</au><au>Zhang, Mingda</au><au>Li, Shangcheng</au><au>Li, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>37</volume><issue>2</issue><spage>380</spage><epage>402</epage><pages>380-402</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2022.2119477</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5361-6034</orcidid><orcidid>https://orcid.org/0000-0003-3006-4542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2023-02, Vol.37 (2), p.380-402
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_proquest_journals_2763157098
source Taylor & Francis Journals Complete; Alma/SFX Local Collection
subjects Car sharing
Deep learning
Idling
Learning
Machine learning
Markov processes
Matching
multi-agent reinforcement learning
Multiagent systems
Order matching
Reagents
Reinforcement
Rejection rate
Transportation services
vehicle repositioning
Vehicles
title Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-agent%20reinforcement%20learning%20to%20unify%20order-matching%20and%20vehicle-repositioning%20in%20ride-hailing%20services&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Xu,%20Mingyue&rft.date=2023-02-01&rft.volume=37&rft.issue=2&rft.spage=380&rft.epage=402&rft.pages=380-402&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2022.2119477&rft_dat=%3Cproquest_infor%3E2763157098%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763157098&rft_id=info:pmid/&rfr_iscdi=true