On generating r-uniform subspaces with the isometric mapping method

We propose a compositional approach to construct subspaces consisting entirely of r-uniform states, including the ones in heterogeneous systems. The approach allows one to construct new objects from old ones: it combines encoding isometries of pure quantum error correcting codes with entangled multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
1. Verfasser: Antipin, K V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Antipin, K V
description We propose a compositional approach to construct subspaces consisting entirely of r-uniform states, including the ones in heterogeneous systems. The approach allows one to construct new objects from old ones: it combines encoding isometries of pure quantum error correcting codes with entangled multipartite states and subspaces. The presented methods can be also used to construct new pure quantum error correcting codes from certain combinations of old ones. The approach is illustrated with various examples including constructions of 2-, 3-, 4-, 5-uniform subspaces. The results are then compared with analogous constructions obtained with the use of orthogonal arrays.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2763154715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763154715</sourcerecordid><originalsourceid>FETCH-proquest_journals_27631547153</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_XOhZ0M1p71L01kvvsuyqE93W7ka_n0Ef0NPhcM6GJVyIIjuVnO9YSjTlec6rmkspEtbcDAxo0KugzQA-i0b31i9A8UFOdUjw1mGEMCJosgsGrztYlHPffdXRPg9s26uZMP1xz46X8725Zs7bV0QK7WSjN2tqeV2JQpZ1IcV_1wcs9jqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763154715</pqid></control><display><type>article</type><title>On generating r-uniform subspaces with the isometric mapping method</title><source>Free E- Journals</source><creator>Antipin, K V</creator><creatorcontrib>Antipin, K V</creatorcontrib><description>We propose a compositional approach to construct subspaces consisting entirely of r-uniform states, including the ones in heterogeneous systems. The approach allows one to construct new objects from old ones: it combines encoding isometries of pure quantum error correcting codes with entangled multipartite states and subspaces. The presented methods can be also used to construct new pure quantum error correcting codes from certain combinations of old ones. The approach is illustrated with various examples including constructions of 2-, 3-, 4-, 5-uniform subspaces. The results are then compared with analogous constructions obtained with the use of orthogonal arrays.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Error correcting codes ; Error correction ; Orthogonal arrays ; Subspaces</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Antipin, K V</creatorcontrib><title>On generating r-uniform subspaces with the isometric mapping method</title><title>arXiv.org</title><description>We propose a compositional approach to construct subspaces consisting entirely of r-uniform states, including the ones in heterogeneous systems. The approach allows one to construct new objects from old ones: it combines encoding isometries of pure quantum error correcting codes with entangled multipartite states and subspaces. The presented methods can be also used to construct new pure quantum error correcting codes from certain combinations of old ones. The approach is illustrated with various examples including constructions of 2-, 3-, 4-, 5-uniform subspaces. The results are then compared with analogous constructions obtained with the use of orthogonal arrays.</description><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Orthogonal arrays</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_XOhZ0M1p71L01kvvsuyqE93W7ka_n0Ef0NPhcM6GJVyIIjuVnO9YSjTlec6rmkspEtbcDAxo0KugzQA-i0b31i9A8UFOdUjw1mGEMCJosgsGrztYlHPffdXRPg9s26uZMP1xz46X8725Zs7bV0QK7WSjN2tqeV2JQpZ1IcV_1wcs9jqc</recordid><startdate>20230108</startdate><enddate>20230108</enddate><creator>Antipin, K V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230108</creationdate><title>On generating r-uniform subspaces with the isometric mapping method</title><author>Antipin, K V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27631547153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Orthogonal arrays</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Antipin, K V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antipin, K V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On generating r-uniform subspaces with the isometric mapping method</atitle><jtitle>arXiv.org</jtitle><date>2023-01-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a compositional approach to construct subspaces consisting entirely of r-uniform states, including the ones in heterogeneous systems. The approach allows one to construct new objects from old ones: it combines encoding isometries of pure quantum error correcting codes with entangled multipartite states and subspaces. The presented methods can be also used to construct new pure quantum error correcting codes from certain combinations of old ones. The approach is illustrated with various examples including constructions of 2-, 3-, 4-, 5-uniform subspaces. The results are then compared with analogous constructions obtained with the use of orthogonal arrays.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2763154715
source Free E- Journals
subjects Error correcting codes
Error correction
Orthogonal arrays
Subspaces
title On generating r-uniform subspaces with the isometric mapping method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20generating%20r-uniform%20subspaces%20with%20the%20isometric%20mapping%20method&rft.jtitle=arXiv.org&rft.au=Antipin,%20K%20V&rft.date=2023-01-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2763154715%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763154715&rft_id=info:pmid/&rfr_iscdi=true