On Analogs of the Bobylev–Steklov Case for a Gyrostat under the Action of a Moment of Gyroscopic Forces

Equations of motion of a gyrostat around a fixed point under the action of a moment of gyroscopic forces are studied. Analogs of the Bobylev–Steklov case are obtained; it is shown that, unlike the classical case of a rigid body, Bobylev’s and Steklov’s approaches are not equivalent and can provide c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of solids 2022-12, Vol.57 (7), p.1633-1643
1. Verfasser: Kosov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1643
container_issue 7
container_start_page 1633
container_title Mechanics of solids
container_volume 57
creator Kosov, A. A.
description Equations of motion of a gyrostat around a fixed point under the action of a moment of gyroscopic forces are studied. Analogs of the Bobylev–Steklov case are obtained; it is shown that, unlike the classical case of a rigid body, Bobylev’s and Steklov’s approaches are not equivalent and can provide complementary results. Conditions have been found under which parametric families of particular solutions expressed in terms of elliptic functions can be constructed. Six types of stationary solutions are singled out, and the conditions for their stability are obtained using the method of the Chetayev integral connections.
doi_str_mv 10.3103/S0025654422070093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762938613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762938613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-7940ce74b8f52554dfb179ff0de0544d98caa942b6b83ea84942d08b60b21023</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gevTmZ36yrMVWoeKi3Q-ZTFKnTic1SQvd-Q6-oU9iphVciKt74XzncO5F6JrALSPA7uYANM1SzimFHECwEzQggvEkFyw7RYNeTnr9HF14vwLIgFIyQM1Lh0edbO3SY2tweNX43lb7Vu--Pj7nQb-1dofH0mtsrMMST_fO-iAD3na1dgd-pEJju94t8bNd6y70-wFUdtMoPLFOaX-Jzoxsvb76mUO0mDwsxo_J7GX6NB7NEkVEEWJfDkrnvCpMStOU16YiuTAGag2xfi0KJaXgtMqqgmlZ8LjXUFQZVJQAZUN0c4zdOPu-1T6UK7t18UJf0jyjghUZYZEiR0rFlt5pU25cs5ZuXxIo-4eWfx4aPfTo8ZHtltr9Jv9v-gbw93co</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762938613</pqid></control><display><type>article</type><title>On Analogs of the Bobylev–Steklov Case for a Gyrostat under the Action of a Moment of Gyroscopic Forces</title><source>Springer Nature - Complete Springer Journals</source><creator>Kosov, A. A.</creator><creatorcontrib>Kosov, A. A.</creatorcontrib><description>Equations of motion of a gyrostat around a fixed point under the action of a moment of gyroscopic forces are studied. Analogs of the Bobylev–Steklov case are obtained; it is shown that, unlike the classical case of a rigid body, Bobylev’s and Steklov’s approaches are not equivalent and can provide complementary results. Conditions have been found under which parametric families of particular solutions expressed in terms of elliptic functions can be constructed. Six types of stationary solutions are singled out, and the conditions for their stability are obtained using the method of the Chetayev integral connections.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S0025654422070093</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analogs ; Classical Mechanics ; Elliptic functions ; Equations of motion ; Physics ; Physics and Astronomy ; Rigid structures</subject><ispartof>Mechanics of solids, 2022-12, Vol.57 (7), p.1633-1643</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0025-6544, Mechanics of Solids, 2022, Vol. 57, No. 7, pp. 1633–1643. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Prikladnaya Matematika i Mekhanika, 2022, Vol. 86, No. 3, pp. 299–312.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-7940ce74b8f52554dfb179ff0de0544d98caa942b6b83ea84942d08b60b21023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0025654422070093$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0025654422070093$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kosov, A. A.</creatorcontrib><title>On Analogs of the Bobylev–Steklov Case for a Gyrostat under the Action of a Moment of Gyroscopic Forces</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>Equations of motion of a gyrostat around a fixed point under the action of a moment of gyroscopic forces are studied. Analogs of the Bobylev–Steklov case are obtained; it is shown that, unlike the classical case of a rigid body, Bobylev’s and Steklov’s approaches are not equivalent and can provide complementary results. Conditions have been found under which parametric families of particular solutions expressed in terms of elliptic functions can be constructed. Six types of stationary solutions are singled out, and the conditions for their stability are obtained using the method of the Chetayev integral connections.</description><subject>Analogs</subject><subject>Classical Mechanics</subject><subject>Elliptic functions</subject><subject>Equations of motion</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rigid structures</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gevTmZ36yrMVWoeKi3Q-ZTFKnTic1SQvd-Q6-oU9iphVciKt74XzncO5F6JrALSPA7uYANM1SzimFHECwEzQggvEkFyw7RYNeTnr9HF14vwLIgFIyQM1Lh0edbO3SY2tweNX43lb7Vu--Pj7nQb-1dofH0mtsrMMST_fO-iAD3na1dgd-pEJju94t8bNd6y70-wFUdtMoPLFOaX-Jzoxsvb76mUO0mDwsxo_J7GX6NB7NEkVEEWJfDkrnvCpMStOU16YiuTAGag2xfi0KJaXgtMqqgmlZ8LjXUFQZVJQAZUN0c4zdOPu-1T6UK7t18UJf0jyjghUZYZEiR0rFlt5pU25cs5ZuXxIo-4eWfx4aPfTo8ZHtltr9Jv9v-gbw93co</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kosov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>On Analogs of the Bobylev–Steklov Case for a Gyrostat under the Action of a Moment of Gyroscopic Forces</title><author>Kosov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-7940ce74b8f52554dfb179ff0de0544d98caa942b6b83ea84942d08b60b21023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analogs</topic><topic>Classical Mechanics</topic><topic>Elliptic functions</topic><topic>Equations of motion</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rigid structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Analogs of the Bobylev–Steklov Case for a Gyrostat under the Action of a Moment of Gyroscopic Forces</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>57</volume><issue>7</issue><spage>1633</spage><epage>1643</epage><pages>1633-1643</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>Equations of motion of a gyrostat around a fixed point under the action of a moment of gyroscopic forces are studied. Analogs of the Bobylev–Steklov case are obtained; it is shown that, unlike the classical case of a rigid body, Bobylev’s and Steklov’s approaches are not equivalent and can provide complementary results. Conditions have been found under which parametric families of particular solutions expressed in terms of elliptic functions can be constructed. Six types of stationary solutions are singled out, and the conditions for their stability are obtained using the method of the Chetayev integral connections.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0025654422070093</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6544
ispartof Mechanics of solids, 2022-12, Vol.57 (7), p.1633-1643
issn 0025-6544
1934-7936
language eng
recordid cdi_proquest_journals_2762938613
source Springer Nature - Complete Springer Journals
subjects Analogs
Classical Mechanics
Elliptic functions
Equations of motion
Physics
Physics and Astronomy
Rigid structures
title On Analogs of the Bobylev–Steklov Case for a Gyrostat under the Action of a Moment of Gyroscopic Forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Analogs%20of%20the%20Bobylev%E2%80%93Steklov%20Case%20for%20a%20Gyrostat%20under%20the%20Action%20of%20a%20Moment%20of%20Gyroscopic%20Forces&rft.jtitle=Mechanics%20of%20solids&rft.au=Kosov,%20A.%20A.&rft.date=2022-12-01&rft.volume=57&rft.issue=7&rft.spage=1633&rft.epage=1643&rft.pages=1633-1643&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S0025654422070093&rft_dat=%3Cproquest_cross%3E2762938613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762938613&rft_id=info:pmid/&rfr_iscdi=true