Dynamics and chimera state in a neural network with discrete memristor coupling
Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2022-12, Vol.231 (22-23), p.4065-4076 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4076 |
---|---|
container_issue | 22-23 |
container_start_page | 4065 |
container_title | The European physical journal. ST, Special topics |
container_volume | 231 |
creator | Shang, Chenxi He, Shaobo Rajagopal, Karthikeyan Wang, Huihai Sun, Kehui |
description | Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks. |
doi_str_mv | 10.1140/epjs/s11734-022-00699-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762936519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762936519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhiHeqJ7TheovKUKnUDa8txnNaleWAnqsrX4xAQSxajOxrdO6M5CF0DuQVgZGG7XVgEAEFZQtI0ISSTMvk8QTOQHJKMETj97Snn5-gihB0hPEslnaH1_bHRtTMB66bEZutq6zUOve4tdg3WuLGD1_so_aH17_jg-i0uXTDeRkdta-9C33ps2qHbu2Zzic4qvQ_26kfn6O3x4XX5nKzWTy_Lu1ViKGV9wiueiYKawlQCBDcZgzwWi1MtjCwqwrjO5SjWlkzqtJC5KQVQgLQqMjpHN9Pezrcfgw292rWDb-JJlYrxtYyDjC4xuYxvQ_C2Up13tfZHBUSN9NRIT030VKSnvumpz5jMp2SIiWZj_d_-_6JfxCZ3cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762936519</pqid></control><display><type>article</type><title>Dynamics and chimera state in a neural network with discrete memristor coupling</title><source>Springer Nature - Complete Springer Journals</source><creator>Shang, Chenxi ; He, Shaobo ; Rajagopal, Karthikeyan ; Wang, Huihai ; Sun, Kehui</creator><creatorcontrib>Shang, Chenxi ; He, Shaobo ; Rajagopal, Karthikeyan ; Wang, Huihai ; Sun, Kehui</creatorcontrib><description>Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-022-00699-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Collective Behavior of Nonlinear Dynamical Oscillators ; Condensed Matter Physics ; Coupled modes ; Coupling ; Materials Science ; Measurement Science and Instrumentation ; Memristors ; Molecular ; Neural networks ; Neurons ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Synapses ; Synchronism</subject><ispartof>The European physical journal. ST, Special topics, 2022-12, Vol.231 (22-23), p.4065-4076</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</citedby><cites>FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</cites><orcidid>0000-0003-2503-9262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-022-00699-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-022-00699-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shang, Chenxi</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Rajagopal, Karthikeyan</creatorcontrib><creatorcontrib>Wang, Huihai</creatorcontrib><creatorcontrib>Sun, Kehui</creatorcontrib><title>Dynamics and chimera state in a neural network with discrete memristor coupling</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Collective Behavior of Nonlinear Dynamical Oscillators</subject><subject>Condensed Matter Physics</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Memristors</subject><subject>Molecular</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Synapses</subject><subject>Synchronism</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhiHeqJ7TheovKUKnUDa8txnNaleWAnqsrX4xAQSxajOxrdO6M5CF0DuQVgZGG7XVgEAEFZQtI0ISSTMvk8QTOQHJKMETj97Snn5-gihB0hPEslnaH1_bHRtTMB66bEZutq6zUOve4tdg3WuLGD1_so_aH17_jg-i0uXTDeRkdta-9C33ps2qHbu2Zzic4qvQ_26kfn6O3x4XX5nKzWTy_Lu1ViKGV9wiueiYKawlQCBDcZgzwWi1MtjCwqwrjO5SjWlkzqtJC5KQVQgLQqMjpHN9Pezrcfgw292rWDb-JJlYrxtYyDjC4xuYxvQ_C2Up13tfZHBUSN9NRIT030VKSnvumpz5jMp2SIiWZj_d_-_6JfxCZ3cA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Shang, Chenxi</creator><creator>He, Shaobo</creator><creator>Rajagopal, Karthikeyan</creator><creator>Wang, Huihai</creator><creator>Sun, Kehui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2503-9262</orcidid></search><sort><creationdate>20221201</creationdate><title>Dynamics and chimera state in a neural network with discrete memristor coupling</title><author>Shang, Chenxi ; He, Shaobo ; Rajagopal, Karthikeyan ; Wang, Huihai ; Sun, Kehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Collective Behavior of Nonlinear Dynamical Oscillators</topic><topic>Condensed Matter Physics</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Memristors</topic><topic>Molecular</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Synapses</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Chenxi</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Rajagopal, Karthikeyan</creatorcontrib><creatorcontrib>Wang, Huihai</creatorcontrib><creatorcontrib>Sun, Kehui</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Chenxi</au><au>He, Shaobo</au><au>Rajagopal, Karthikeyan</au><au>Wang, Huihai</au><au>Sun, Kehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and chimera state in a neural network with discrete memristor coupling</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>231</volume><issue>22-23</issue><spage>4065</spage><epage>4076</epage><pages>4065-4076</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-022-00699-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2503-9262</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2022-12, Vol.231 (22-23), p.4065-4076 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2762936519 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic Classical and Continuum Physics Collective Behavior of Nonlinear Dynamical Oscillators Condensed Matter Physics Coupled modes Coupling Materials Science Measurement Science and Instrumentation Memristors Molecular Neural networks Neurons Optical and Plasma Physics Physics Physics and Astronomy Regular Article Synapses Synchronism |
title | Dynamics and chimera state in a neural network with discrete memristor coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20chimera%20state%20in%20a%20neural%20network%20with%20discrete%20memristor%20coupling&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Shang,%20Chenxi&rft.date=2022-12-01&rft.volume=231&rft.issue=22-23&rft.spage=4065&rft.epage=4076&rft.pages=4065-4076&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-022-00699-z&rft_dat=%3Cproquest_cross%3E2762936519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762936519&rft_id=info:pmid/&rfr_iscdi=true |