Dynamics and chimera state in a neural network with discrete memristor coupling

Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2022-12, Vol.231 (22-23), p.4065-4076
Hauptverfasser: Shang, Chenxi, He, Shaobo, Rajagopal, Karthikeyan, Wang, Huihai, Sun, Kehui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4076
container_issue 22-23
container_start_page 4065
container_title The European physical journal. ST, Special topics
container_volume 231
creator Shang, Chenxi
He, Shaobo
Rajagopal, Karthikeyan
Wang, Huihai
Sun, Kehui
description Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.
doi_str_mv 10.1140/epjs/s11734-022-00699-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762936519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762936519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhiHeqJ7TheovKUKnUDa8txnNaleWAnqsrX4xAQSxajOxrdO6M5CF0DuQVgZGG7XVgEAEFZQtI0ISSTMvk8QTOQHJKMETj97Snn5-gihB0hPEslnaH1_bHRtTMB66bEZutq6zUOve4tdg3WuLGD1_so_aH17_jg-i0uXTDeRkdta-9C33ps2qHbu2Zzic4qvQ_26kfn6O3x4XX5nKzWTy_Lu1ViKGV9wiueiYKawlQCBDcZgzwWi1MtjCwqwrjO5SjWlkzqtJC5KQVQgLQqMjpHN9Pezrcfgw292rWDb-JJlYrxtYyDjC4xuYxvQ_C2Up13tfZHBUSN9NRIT030VKSnvumpz5jMp2SIiWZj_d_-_6JfxCZ3cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762936519</pqid></control><display><type>article</type><title>Dynamics and chimera state in a neural network with discrete memristor coupling</title><source>Springer Nature - Complete Springer Journals</source><creator>Shang, Chenxi ; He, Shaobo ; Rajagopal, Karthikeyan ; Wang, Huihai ; Sun, Kehui</creator><creatorcontrib>Shang, Chenxi ; He, Shaobo ; Rajagopal, Karthikeyan ; Wang, Huihai ; Sun, Kehui</creatorcontrib><description>Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-022-00699-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Classical and Continuum Physics ; Collective Behavior of Nonlinear Dynamical Oscillators ; Condensed Matter Physics ; Coupled modes ; Coupling ; Materials Science ; Measurement Science and Instrumentation ; Memristors ; Molecular ; Neural networks ; Neurons ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Synapses ; Synchronism</subject><ispartof>The European physical journal. ST, Special topics, 2022-12, Vol.231 (22-23), p.4065-4076</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</citedby><cites>FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</cites><orcidid>0000-0003-2503-9262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-022-00699-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-022-00699-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shang, Chenxi</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Rajagopal, Karthikeyan</creatorcontrib><creatorcontrib>Wang, Huihai</creatorcontrib><creatorcontrib>Sun, Kehui</creatorcontrib><title>Dynamics and chimera state in a neural network with discrete memristor coupling</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Collective Behavior of Nonlinear Dynamical Oscillators</subject><subject>Condensed Matter Physics</subject><subject>Coupled modes</subject><subject>Coupling</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Memristors</subject><subject>Molecular</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Synapses</subject><subject>Synchronism</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhiHeqJ7TheovKUKnUDa8txnNaleWAnqsrX4xAQSxajOxrdO6M5CF0DuQVgZGG7XVgEAEFZQtI0ISSTMvk8QTOQHJKMETj97Snn5-gihB0hPEslnaH1_bHRtTMB66bEZutq6zUOve4tdg3WuLGD1_so_aH17_jg-i0uXTDeRkdta-9C33ps2qHbu2Zzic4qvQ_26kfn6O3x4XX5nKzWTy_Lu1ViKGV9wiueiYKawlQCBDcZgzwWi1MtjCwqwrjO5SjWlkzqtJC5KQVQgLQqMjpHN9Pezrcfgw292rWDb-JJlYrxtYyDjC4xuYxvQ_C2Up13tfZHBUSN9NRIT030VKSnvumpz5jMp2SIiWZj_d_-_6JfxCZ3cA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Shang, Chenxi</creator><creator>He, Shaobo</creator><creator>Rajagopal, Karthikeyan</creator><creator>Wang, Huihai</creator><creator>Sun, Kehui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2503-9262</orcidid></search><sort><creationdate>20221201</creationdate><title>Dynamics and chimera state in a neural network with discrete memristor coupling</title><author>Shang, Chenxi ; He, Shaobo ; Rajagopal, Karthikeyan ; Wang, Huihai ; Sun, Kehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5f567b3cbcf7175c64186414567a7c9bf045a89f045eed49a2b98cd713112fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Collective Behavior of Nonlinear Dynamical Oscillators</topic><topic>Condensed Matter Physics</topic><topic>Coupled modes</topic><topic>Coupling</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Memristors</topic><topic>Molecular</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Synapses</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Chenxi</creatorcontrib><creatorcontrib>He, Shaobo</creatorcontrib><creatorcontrib>Rajagopal, Karthikeyan</creatorcontrib><creatorcontrib>Wang, Huihai</creatorcontrib><creatorcontrib>Sun, Kehui</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Chenxi</au><au>He, Shaobo</au><au>Rajagopal, Karthikeyan</au><au>Wang, Huihai</au><au>Sun, Kehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and chimera state in a neural network with discrete memristor coupling</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>231</volume><issue>22-23</issue><spage>4065</spage><epage>4076</epage><pages>4065-4076</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>Due to characteristics of memristor being highly similar to the principle and structure of synapses in biological brains, memristor neural networks are widely studied. Discrete memristor made it possible to study the discrete memristor neural network. In this paper, the properties of the individual Chialvo neuron are discussed. The synchronization of two neurons through different firing modes coupled with a discrete memristor is studied by changing the coupling gain. A ring neural network is constructed, and two adjacent neurons are connected by a discrete memristor. Synchronization and chimera state in the network are analyzed from the coupling gain and the number of neurons with different firing modes in the network. Simulation results show that discrete memristor plays the role of synapse well and realizes the synchronization of neurons and neural networks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-022-00699-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2503-9262</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2022-12, Vol.231 (22-23), p.4065-4076
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2762936519
source Springer Nature - Complete Springer Journals
subjects Atomic
Classical and Continuum Physics
Collective Behavior of Nonlinear Dynamical Oscillators
Condensed Matter Physics
Coupled modes
Coupling
Materials Science
Measurement Science and Instrumentation
Memristors
Molecular
Neural networks
Neurons
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Synapses
Synchronism
title Dynamics and chimera state in a neural network with discrete memristor coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20chimera%20state%20in%20a%20neural%20network%20with%20discrete%20memristor%20coupling&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Shang,%20Chenxi&rft.date=2022-12-01&rft.volume=231&rft.issue=22-23&rft.spage=4065&rft.epage=4076&rft.pages=4065-4076&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-022-00699-z&rft_dat=%3Cproquest_cross%3E2762936519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762936519&rft_id=info:pmid/&rfr_iscdi=true