Potential‐Driven Semiconductor‐to‐Metal Transition in Monolayer Transition Metal Dichalcogenides

The potential‐driven semiconductor‐to‐metal transition is investigated in monolayer transition metal dichalcogenides by employing a new proposed method, i.e., the fixed‐potential method (FPM). Under the same voltage, the semiconducting and metallic phases will be charged differently due to their dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-01, Vol.33 (2), p.n/a
Hauptverfasser: Zhang, Quan, Zhang, Yang, Gao, Guoping, Zhang, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced functional materials
container_volume 33
creator Zhang, Quan
Zhang, Yang
Gao, Guoping
Zhang, Shengli
description The potential‐driven semiconductor‐to‐metal transition is investigated in monolayer transition metal dichalcogenides by employing a new proposed method, i.e., the fixed‐potential method (FPM). Under the same voltage, the semiconducting and metallic phases will be charged differently due to their different electronic properties. The potential‐driven phase transition process is simulated by the injection of unequal electrons in the semiconducting and metallic phases. The unequal electron injection is more consistent with the actual experimental process, although equal electron injection also can theoretically induce a phase transition. MoTe2 is chosen as a prototypical example to examine the physical mechanism. When the fixed electrode potential is above the potential of zero‐charge, excess electrons are injected into the metallic 1T’ phase instead of the semiconducting 2H phase, stabilizing the 1T’ phase. In addition, the potential‐dependent kinetics, in which the charge transfer is fluctuating, suggests that increasing the electrode potential will decrease the kinetic barrier of the 2H→1T’ transition process. The calculated relative transition voltage of 2.5 V agrees well with the experimental results, demonstrating the validity of the FPM. This study provides new insight into potential‐driven semiconductor‐to‐metal phase transitions and suggests a new theoretical approach for studies under constant voltage conditions. During the potential‐driven semiconductor‐to‐metal phase transition, more electrons are injected into the metallic phase than the semiconducting phase under same electrode potential. MoTe2 is chosen as a prototypical example to study the phase transition by utilizing the fixed‐potential method, which verifies the mechanism and agrees well with the experimental results. The calculations can provide experimental groups with an explicit picture of the potential effects on the phase transition directly.
doi_str_mv 10.1002/adfm.202208736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762857210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762857210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-3b838b1a89c10733614d19cbb553bd8b0b89b1d9af5eaeb4db7353bf0f9279d63</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzwueW_PR3WSPpbUqtChYwVvI12rKNqnJVtmbP8Hf6C8xZaV68zIzzDzvzPACcI7gEEGIL4Wu1kMMMYaMkuIA9FCBigGBmB3ua_R0DE5iXEGIKCWjHqjufWNcY0X99fE5DfbNuOzBrK3yTm9V40NqNz6FhWlEnS2DcNE21rvMumzhna9Fa8LffgdOrXoRtfLPxllt4ik4qkQdzdlP7oPH2dVycjOY313fTsbzgSKIpgclI0wiwUqFICWkQCONSiVlnhOpmYSSlRLpUlS5EUaOtKQkTSpYlZiWuiB9cNHt3QT_ujWx4Su_DS6d5JgWmOUUI5ioYUep4GMMpuKbYNcitBxBvvOS77zkey-ToOwE77Y27T80H09ni1_tN3v-fTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762857210</pqid></control><display><type>article</type><title>Potential‐Driven Semiconductor‐to‐Metal Transition in Monolayer Transition Metal Dichalcogenides</title><source>Wiley Online Library All Journals</source><creator>Zhang, Quan ; Zhang, Yang ; Gao, Guoping ; Zhang, Shengli</creator><creatorcontrib>Zhang, Quan ; Zhang, Yang ; Gao, Guoping ; Zhang, Shengli</creatorcontrib><description>The potential‐driven semiconductor‐to‐metal transition is investigated in monolayer transition metal dichalcogenides by employing a new proposed method, i.e., the fixed‐potential method (FPM). Under the same voltage, the semiconducting and metallic phases will be charged differently due to their different electronic properties. The potential‐driven phase transition process is simulated by the injection of unequal electrons in the semiconducting and metallic phases. The unequal electron injection is more consistent with the actual experimental process, although equal electron injection also can theoretically induce a phase transition. MoTe2 is chosen as a prototypical example to examine the physical mechanism. When the fixed electrode potential is above the potential of zero‐charge, excess electrons are injected into the metallic 1T’ phase instead of the semiconducting 2H phase, stabilizing the 1T’ phase. In addition, the potential‐dependent kinetics, in which the charge transfer is fluctuating, suggests that increasing the electrode potential will decrease the kinetic barrier of the 2H→1T’ transition process. The calculated relative transition voltage of 2.5 V agrees well with the experimental results, demonstrating the validity of the FPM. This study provides new insight into potential‐driven semiconductor‐to‐metal phase transitions and suggests a new theoretical approach for studies under constant voltage conditions. During the potential‐driven semiconductor‐to‐metal phase transition, more electrons are injected into the metallic phase than the semiconducting phase under same electrode potential. MoTe2 is chosen as a prototypical example to study the phase transition by utilizing the fixed‐potential method, which verifies the mechanism and agrees well with the experimental results. The calculations can provide experimental groups with an explicit picture of the potential effects on the phase transition directly.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202208736</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chalcogenides ; Charge transfer ; Electric potential ; Electrode potentials ; Electrodes ; Electrons ; fixed‐potential method ; Materials science ; Monolayers ; Phase transitions ; potential‐dependent kinetics ; semiconductor‐to‐metal transition ; Transition metal compounds ; transition metal dichalcogenides ; Voltage</subject><ispartof>Advanced functional materials, 2023-01, Vol.33 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-3b838b1a89c10733614d19cbb553bd8b0b89b1d9af5eaeb4db7353bf0f9279d63</citedby><cites>FETCH-LOGICAL-c3176-3b838b1a89c10733614d19cbb553bd8b0b89b1d9af5eaeb4db7353bf0f9279d63</cites><orcidid>0000-0002-6106-7423 ; 0000-0001-8925-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202208736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202208736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zhang, Quan</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Gao, Guoping</creatorcontrib><creatorcontrib>Zhang, Shengli</creatorcontrib><title>Potential‐Driven Semiconductor‐to‐Metal Transition in Monolayer Transition Metal Dichalcogenides</title><title>Advanced functional materials</title><description>The potential‐driven semiconductor‐to‐metal transition is investigated in monolayer transition metal dichalcogenides by employing a new proposed method, i.e., the fixed‐potential method (FPM). Under the same voltage, the semiconducting and metallic phases will be charged differently due to their different electronic properties. The potential‐driven phase transition process is simulated by the injection of unequal electrons in the semiconducting and metallic phases. The unequal electron injection is more consistent with the actual experimental process, although equal electron injection also can theoretically induce a phase transition. MoTe2 is chosen as a prototypical example to examine the physical mechanism. When the fixed electrode potential is above the potential of zero‐charge, excess electrons are injected into the metallic 1T’ phase instead of the semiconducting 2H phase, stabilizing the 1T’ phase. In addition, the potential‐dependent kinetics, in which the charge transfer is fluctuating, suggests that increasing the electrode potential will decrease the kinetic barrier of the 2H→1T’ transition process. The calculated relative transition voltage of 2.5 V agrees well with the experimental results, demonstrating the validity of the FPM. This study provides new insight into potential‐driven semiconductor‐to‐metal phase transitions and suggests a new theoretical approach for studies under constant voltage conditions. During the potential‐driven semiconductor‐to‐metal phase transition, more electrons are injected into the metallic phase than the semiconducting phase under same electrode potential. MoTe2 is chosen as a prototypical example to study the phase transition by utilizing the fixed‐potential method, which verifies the mechanism and agrees well with the experimental results. The calculations can provide experimental groups with an explicit picture of the potential effects on the phase transition directly.</description><subject>Chalcogenides</subject><subject>Charge transfer</subject><subject>Electric potential</subject><subject>Electrode potentials</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>fixed‐potential method</subject><subject>Materials science</subject><subject>Monolayers</subject><subject>Phase transitions</subject><subject>potential‐dependent kinetics</subject><subject>semiconductor‐to‐metal transition</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzwueW_PR3WSPpbUqtChYwVvI12rKNqnJVtmbP8Hf6C8xZaV68zIzzDzvzPACcI7gEEGIL4Wu1kMMMYaMkuIA9FCBigGBmB3ua_R0DE5iXEGIKCWjHqjufWNcY0X99fE5DfbNuOzBrK3yTm9V40NqNz6FhWlEnS2DcNE21rvMumzhna9Fa8LffgdOrXoRtfLPxllt4ik4qkQdzdlP7oPH2dVycjOY313fTsbzgSKIpgclI0wiwUqFICWkQCONSiVlnhOpmYSSlRLpUlS5EUaOtKQkTSpYlZiWuiB9cNHt3QT_ujWx4Su_DS6d5JgWmOUUI5ioYUep4GMMpuKbYNcitBxBvvOS77zkey-ToOwE77Y27T80H09ni1_tN3v-fTM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Quan</creator><creator>Zhang, Yang</creator><creator>Gao, Guoping</creator><creator>Zhang, Shengli</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6106-7423</orcidid><orcidid>https://orcid.org/0000-0001-8925-2906</orcidid></search><sort><creationdate>20230101</creationdate><title>Potential‐Driven Semiconductor‐to‐Metal Transition in Monolayer Transition Metal Dichalcogenides</title><author>Zhang, Quan ; Zhang, Yang ; Gao, Guoping ; Zhang, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-3b838b1a89c10733614d19cbb553bd8b0b89b1d9af5eaeb4db7353bf0f9279d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chalcogenides</topic><topic>Charge transfer</topic><topic>Electric potential</topic><topic>Electrode potentials</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>fixed‐potential method</topic><topic>Materials science</topic><topic>Monolayers</topic><topic>Phase transitions</topic><topic>potential‐dependent kinetics</topic><topic>semiconductor‐to‐metal transition</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Quan</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Gao, Guoping</creatorcontrib><creatorcontrib>Zhang, Shengli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Quan</au><au>Zhang, Yang</au><au>Gao, Guoping</au><au>Zhang, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential‐Driven Semiconductor‐to‐Metal Transition in Monolayer Transition Metal Dichalcogenides</atitle><jtitle>Advanced functional materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>2</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The potential‐driven semiconductor‐to‐metal transition is investigated in monolayer transition metal dichalcogenides by employing a new proposed method, i.e., the fixed‐potential method (FPM). Under the same voltage, the semiconducting and metallic phases will be charged differently due to their different electronic properties. The potential‐driven phase transition process is simulated by the injection of unequal electrons in the semiconducting and metallic phases. The unequal electron injection is more consistent with the actual experimental process, although equal electron injection also can theoretically induce a phase transition. MoTe2 is chosen as a prototypical example to examine the physical mechanism. When the fixed electrode potential is above the potential of zero‐charge, excess electrons are injected into the metallic 1T’ phase instead of the semiconducting 2H phase, stabilizing the 1T’ phase. In addition, the potential‐dependent kinetics, in which the charge transfer is fluctuating, suggests that increasing the electrode potential will decrease the kinetic barrier of the 2H→1T’ transition process. The calculated relative transition voltage of 2.5 V agrees well with the experimental results, demonstrating the validity of the FPM. This study provides new insight into potential‐driven semiconductor‐to‐metal phase transitions and suggests a new theoretical approach for studies under constant voltage conditions. During the potential‐driven semiconductor‐to‐metal phase transition, more electrons are injected into the metallic phase than the semiconducting phase under same electrode potential. MoTe2 is chosen as a prototypical example to study the phase transition by utilizing the fixed‐potential method, which verifies the mechanism and agrees well with the experimental results. The calculations can provide experimental groups with an explicit picture of the potential effects on the phase transition directly.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202208736</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6106-7423</orcidid><orcidid>https://orcid.org/0000-0001-8925-2906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-01, Vol.33 (2), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2762857210
source Wiley Online Library All Journals
subjects Chalcogenides
Charge transfer
Electric potential
Electrode potentials
Electrodes
Electrons
fixed‐potential method
Materials science
Monolayers
Phase transitions
potential‐dependent kinetics
semiconductor‐to‐metal transition
Transition metal compounds
transition metal dichalcogenides
Voltage
title Potential‐Driven Semiconductor‐to‐Metal Transition in Monolayer Transition Metal Dichalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%E2%80%90Driven%20Semiconductor%E2%80%90to%E2%80%90Metal%20Transition%20in%20Monolayer%20Transition%20Metal%20Dichalcogenides&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Quan&rft.date=2023-01-01&rft.volume=33&rft.issue=2&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202208736&rft_dat=%3Cproquest_cross%3E2762857210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762857210&rft_id=info:pmid/&rfr_iscdi=true