Enhanced Elastic Migration of Magnesium Cations in alpha‐Manganese Dioxide Tunnels Locally Tuned by Aluminium Substitution

The harsh conditions of large hydrated ion radius of Mg2+ cations and the strong electrostatic interaction with the host material put forward higher requirements for high‐performance aqueous magnesium ion (Mg2+) energy storage devices. Herein, substituted aluminium ions (Al3+) doped α‐MnO2 materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-01, Vol.33 (2), p.n/a
Hauptverfasser: Ding, Yaxi, Zhang, Siwen, Li, Jiazhuo, Sun, Ying, Yin, Bosi, Li, Hui, Ma, Yue, Wang, Zhiqiao, Ge, Hao, Su, Dawei, Ma, Tianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced functional materials
container_volume 33
creator Ding, Yaxi
Zhang, Siwen
Li, Jiazhuo
Sun, Ying
Yin, Bosi
Li, Hui
Ma, Yue
Wang, Zhiqiao
Ge, Hao
Su, Dawei
Ma, Tianyi
description The harsh conditions of large hydrated ion radius of Mg2+ cations and the strong electrostatic interaction with the host material put forward higher requirements for high‐performance aqueous magnesium ion (Mg2+) energy storage devices. Herein, substituted aluminium ions (Al3+) doped α‐MnO2 materials are prepared. The introduction of Al3+ cations adjust the local chemical environment inside the tunnel structure of α‐MnO2 and precisely regulates the diffusion behavior of inserted Mg2+ cations. The shortened oxygens’ distance and abundant oxygen defects result in a substantially enhanced elastic migration pattern of Mg2+ cations driven by strengthened electrostatic attraction, which brings the lower diffusion energy barrier, improved reaction kinetics, and adaptive volume expansion as evidenced by Climbing Image‐Nudged Elastic Band density function theory calculations coupled with experimental confirmation in X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and galvanostatic intermittent titration technique. As a result, this rationally designed cathode exhibits a high reversible capacity of 197.02 mAh g‐1 at 0.1 A g‐1 and stable cycle performance of 2500 cycles with 82% retention. These parameters are among the best of Mg‐ion capacitors reported to date. This study offers a detailed insight into the local tunnel structure tunning effect and opens up a new path of modification for tunnel‐type structural materials. Aluminum substitution for doped α‐MnO2 induces the optimization of its local tunneling structure. Moreover, after doping with Al, oxygen's distance shorten in benefits the electrostatic attraction of Mg2+ cations and decreases the Mg2+ diffusion barrier.
doi_str_mv 10.1002/adfm.202210519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762857069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762857069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-f9bb47dbf57700a60c3a9cdfbcae4ccf3e6a99b6edf217c25fd434afa67a9b903</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEEqWwMltibrGdi-ux6gWQGjFQJLbo2LFbV45T4kQQiYFH4Bl5EhKKYGQ6t___jvQHwSXBY4IxvYZcF2OKKSU4JvwoGJCEJKMQ08nxb0-eToMz73cYE8bCaBC8LdwWnFQ5WljwtZEoNZsKalM6VGqUwsYpb5oCzb53HhmHwO638Pn-kYLbQHdWaG7KV5MrtG6cU9ajVSnB2rafO7Jo0dQ2hXE956ER3Zu66WnnwYkG69XFTx0Gj8vFenY7Wt3f3M2mq5EMY8ZHmgsRsVzomDGMIcEyBC5zLSSoSEodqgQ4F4nKNSVM0ljnURiBhoQBFxyHw-DqwN1X5XOjfJ3tyqZy3cuMsoROYoYT3qnGB5WsSu8rpbN9ZQqo2ozgrE846xPOfhPuDPxgeDFWtf-os-l8mf55vwCB2YPV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762857069</pqid></control><display><type>article</type><title>Enhanced Elastic Migration of Magnesium Cations in alpha‐Manganese Dioxide Tunnels Locally Tuned by Aluminium Substitution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ding, Yaxi ; Zhang, Siwen ; Li, Jiazhuo ; Sun, Ying ; Yin, Bosi ; Li, Hui ; Ma, Yue ; Wang, Zhiqiao ; Ge, Hao ; Su, Dawei ; Ma, Tianyi</creator><creatorcontrib>Ding, Yaxi ; Zhang, Siwen ; Li, Jiazhuo ; Sun, Ying ; Yin, Bosi ; Li, Hui ; Ma, Yue ; Wang, Zhiqiao ; Ge, Hao ; Su, Dawei ; Ma, Tianyi</creatorcontrib><description>The harsh conditions of large hydrated ion radius of Mg2+ cations and the strong electrostatic interaction with the host material put forward higher requirements for high‐performance aqueous magnesium ion (Mg2+) energy storage devices. Herein, substituted aluminium ions (Al3+) doped α‐MnO2 materials are prepared. The introduction of Al3+ cations adjust the local chemical environment inside the tunnel structure of α‐MnO2 and precisely regulates the diffusion behavior of inserted Mg2+ cations. The shortened oxygens’ distance and abundant oxygen defects result in a substantially enhanced elastic migration pattern of Mg2+ cations driven by strengthened electrostatic attraction, which brings the lower diffusion energy barrier, improved reaction kinetics, and adaptive volume expansion as evidenced by Climbing Image‐Nudged Elastic Band density function theory calculations coupled with experimental confirmation in X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and galvanostatic intermittent titration technique. As a result, this rationally designed cathode exhibits a high reversible capacity of 197.02 mAh g‐1 at 0.1 A g‐1 and stable cycle performance of 2500 cycles with 82% retention. These parameters are among the best of Mg‐ion capacitors reported to date. This study offers a detailed insight into the local tunnel structure tunning effect and opens up a new path of modification for tunnel‐type structural materials. Aluminum substitution for doped α‐MnO2 induces the optimization of its local tunneling structure. Moreover, after doping with Al, oxygen's distance shorten in benefits the electrostatic attraction of Mg2+ cations and decreases the Mg2+ diffusion barrier.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202210519</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Al substitutions ; Aluminum ; aqueous Mg‐ion capacitors ; Cations ; Density functional theory ; Diffusion barriers ; electrochemical energy storage ; Electron paramagnetic resonance ; Energy storage ; locally tuned structures ; Magnesium ; Manganese dioxide ; Materials science ; Photoelectrons ; Reaction kinetics ; Substitution reactions ; Titration</subject><ispartof>Advanced functional materials, 2023-01, Vol.33 (2), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-f9bb47dbf57700a60c3a9cdfbcae4ccf3e6a99b6edf217c25fd434afa67a9b903</citedby><cites>FETCH-LOGICAL-c3579-f9bb47dbf57700a60c3a9cdfbcae4ccf3e6a99b6edf217c25fd434afa67a9b903</cites><orcidid>0000-0002-1042-8700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202210519$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202210519$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ding, Yaxi</creatorcontrib><creatorcontrib>Zhang, Siwen</creatorcontrib><creatorcontrib>Li, Jiazhuo</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Yin, Bosi</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Wang, Zhiqiao</creatorcontrib><creatorcontrib>Ge, Hao</creatorcontrib><creatorcontrib>Su, Dawei</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><title>Enhanced Elastic Migration of Magnesium Cations in alpha‐Manganese Dioxide Tunnels Locally Tuned by Aluminium Substitution</title><title>Advanced functional materials</title><description>The harsh conditions of large hydrated ion radius of Mg2+ cations and the strong electrostatic interaction with the host material put forward higher requirements for high‐performance aqueous magnesium ion (Mg2+) energy storage devices. Herein, substituted aluminium ions (Al3+) doped α‐MnO2 materials are prepared. The introduction of Al3+ cations adjust the local chemical environment inside the tunnel structure of α‐MnO2 and precisely regulates the diffusion behavior of inserted Mg2+ cations. The shortened oxygens’ distance and abundant oxygen defects result in a substantially enhanced elastic migration pattern of Mg2+ cations driven by strengthened electrostatic attraction, which brings the lower diffusion energy barrier, improved reaction kinetics, and adaptive volume expansion as evidenced by Climbing Image‐Nudged Elastic Band density function theory calculations coupled with experimental confirmation in X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and galvanostatic intermittent titration technique. As a result, this rationally designed cathode exhibits a high reversible capacity of 197.02 mAh g‐1 at 0.1 A g‐1 and stable cycle performance of 2500 cycles with 82% retention. These parameters are among the best of Mg‐ion capacitors reported to date. This study offers a detailed insight into the local tunnel structure tunning effect and opens up a new path of modification for tunnel‐type structural materials. Aluminum substitution for doped α‐MnO2 induces the optimization of its local tunneling structure. Moreover, after doping with Al, oxygen's distance shorten in benefits the electrostatic attraction of Mg2+ cations and decreases the Mg2+ diffusion barrier.</description><subject>Al substitutions</subject><subject>Aluminum</subject><subject>aqueous Mg‐ion capacitors</subject><subject>Cations</subject><subject>Density functional theory</subject><subject>Diffusion barriers</subject><subject>electrochemical energy storage</subject><subject>Electron paramagnetic resonance</subject><subject>Energy storage</subject><subject>locally tuned structures</subject><subject>Magnesium</subject><subject>Manganese dioxide</subject><subject>Materials science</subject><subject>Photoelectrons</subject><subject>Reaction kinetics</subject><subject>Substitution reactions</subject><subject>Titration</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLtOwzAUhiMEEqWwMltibrGdi-ux6gWQGjFQJLbo2LFbV45T4kQQiYFH4Bl5EhKKYGQ6t___jvQHwSXBY4IxvYZcF2OKKSU4JvwoGJCEJKMQ08nxb0-eToMz73cYE8bCaBC8LdwWnFQ5WljwtZEoNZsKalM6VGqUwsYpb5oCzb53HhmHwO638Pn-kYLbQHdWaG7KV5MrtG6cU9ajVSnB2rafO7Jo0dQ2hXE956ER3Zu66WnnwYkG69XFTx0Gj8vFenY7Wt3f3M2mq5EMY8ZHmgsRsVzomDGMIcEyBC5zLSSoSEodqgQ4F4nKNSVM0ljnURiBhoQBFxyHw-DqwN1X5XOjfJ3tyqZy3cuMsoROYoYT3qnGB5WsSu8rpbN9ZQqo2ozgrE846xPOfhPuDPxgeDFWtf-os-l8mf55vwCB2YPV</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ding, Yaxi</creator><creator>Zhang, Siwen</creator><creator>Li, Jiazhuo</creator><creator>Sun, Ying</creator><creator>Yin, Bosi</creator><creator>Li, Hui</creator><creator>Ma, Yue</creator><creator>Wang, Zhiqiao</creator><creator>Ge, Hao</creator><creator>Su, Dawei</creator><creator>Ma, Tianyi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid></search><sort><creationdate>20230101</creationdate><title>Enhanced Elastic Migration of Magnesium Cations in alpha‐Manganese Dioxide Tunnels Locally Tuned by Aluminium Substitution</title><author>Ding, Yaxi ; Zhang, Siwen ; Li, Jiazhuo ; Sun, Ying ; Yin, Bosi ; Li, Hui ; Ma, Yue ; Wang, Zhiqiao ; Ge, Hao ; Su, Dawei ; Ma, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-f9bb47dbf57700a60c3a9cdfbcae4ccf3e6a99b6edf217c25fd434afa67a9b903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Al substitutions</topic><topic>Aluminum</topic><topic>aqueous Mg‐ion capacitors</topic><topic>Cations</topic><topic>Density functional theory</topic><topic>Diffusion barriers</topic><topic>electrochemical energy storage</topic><topic>Electron paramagnetic resonance</topic><topic>Energy storage</topic><topic>locally tuned structures</topic><topic>Magnesium</topic><topic>Manganese dioxide</topic><topic>Materials science</topic><topic>Photoelectrons</topic><topic>Reaction kinetics</topic><topic>Substitution reactions</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yaxi</creatorcontrib><creatorcontrib>Zhang, Siwen</creatorcontrib><creatorcontrib>Li, Jiazhuo</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Yin, Bosi</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Wang, Zhiqiao</creatorcontrib><creatorcontrib>Ge, Hao</creatorcontrib><creatorcontrib>Su, Dawei</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yaxi</au><au>Zhang, Siwen</au><au>Li, Jiazhuo</au><au>Sun, Ying</au><au>Yin, Bosi</au><au>Li, Hui</au><au>Ma, Yue</au><au>Wang, Zhiqiao</au><au>Ge, Hao</au><au>Su, Dawei</au><au>Ma, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Elastic Migration of Magnesium Cations in alpha‐Manganese Dioxide Tunnels Locally Tuned by Aluminium Substitution</atitle><jtitle>Advanced functional materials</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>33</volume><issue>2</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The harsh conditions of large hydrated ion radius of Mg2+ cations and the strong electrostatic interaction with the host material put forward higher requirements for high‐performance aqueous magnesium ion (Mg2+) energy storage devices. Herein, substituted aluminium ions (Al3+) doped α‐MnO2 materials are prepared. The introduction of Al3+ cations adjust the local chemical environment inside the tunnel structure of α‐MnO2 and precisely regulates the diffusion behavior of inserted Mg2+ cations. The shortened oxygens’ distance and abundant oxygen defects result in a substantially enhanced elastic migration pattern of Mg2+ cations driven by strengthened electrostatic attraction, which brings the lower diffusion energy barrier, improved reaction kinetics, and adaptive volume expansion as evidenced by Climbing Image‐Nudged Elastic Band density function theory calculations coupled with experimental confirmation in X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and galvanostatic intermittent titration technique. As a result, this rationally designed cathode exhibits a high reversible capacity of 197.02 mAh g‐1 at 0.1 A g‐1 and stable cycle performance of 2500 cycles with 82% retention. These parameters are among the best of Mg‐ion capacitors reported to date. This study offers a detailed insight into the local tunnel structure tunning effect and opens up a new path of modification for tunnel‐type structural materials. Aluminum substitution for doped α‐MnO2 induces the optimization of its local tunneling structure. Moreover, after doping with Al, oxygen's distance shorten in benefits the electrostatic attraction of Mg2+ cations and decreases the Mg2+ diffusion barrier.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202210519</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-01, Vol.33 (2), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2762857069
source Wiley Online Library Journals Frontfile Complete
subjects Al substitutions
Aluminum
aqueous Mg‐ion capacitors
Cations
Density functional theory
Diffusion barriers
electrochemical energy storage
Electron paramagnetic resonance
Energy storage
locally tuned structures
Magnesium
Manganese dioxide
Materials science
Photoelectrons
Reaction kinetics
Substitution reactions
Titration
title Enhanced Elastic Migration of Magnesium Cations in alpha‐Manganese Dioxide Tunnels Locally Tuned by Aluminium Substitution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Elastic%20Migration%20of%20Magnesium%20Cations%20in%20alpha%E2%80%90Manganese%20Dioxide%20Tunnels%20Locally%20Tuned%20by%20Aluminium%20Substitution&rft.jtitle=Advanced%20functional%20materials&rft.au=Ding,%20Yaxi&rft.date=2023-01-01&rft.volume=33&rft.issue=2&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202210519&rft_dat=%3Cproquest_cross%3E2762857069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762857069&rft_id=info:pmid/&rfr_iscdi=true