An Enhanced Binary Particle Swarm Optimization (E-BPSO) algorithm for service placement in hybrid cloud platforms

Hybrid cloud platforms offer an attractive solution to organizations interested in implementing integrated private and public cloud applications to meet their profitability requirements. However, this can only be achieved by utilizing available resources while speeding up execution processes. Accord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2023, Vol.35 (2), p.1343-1361
Hauptverfasser: Abbes, Wissem, Kechaou, Zied, Hussain, Amir, Qahtani, Abdulrahman M., Almutiry, Omar, Dhahri, Habib, Alimi, Adel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1361
container_issue 2
container_start_page 1343
container_title Neural computing & applications
container_volume 35
creator Abbes, Wissem
Kechaou, Zied
Hussain, Amir
Qahtani, Abdulrahman M.
Almutiry, Omar
Dhahri, Habib
Alimi, Adel M.
description Hybrid cloud platforms offer an attractive solution to organizations interested in implementing integrated private and public cloud applications to meet their profitability requirements. However, this can only be achieved by utilizing available resources while speeding up execution processes. Accordingly, deploying new applications entails dedicating some of these processes to a private cloud while allocating others to the public cloud. In this context, the current work aims to minimize relevant costs and deliver effective choices for an optimal service placement solution within minimal execution time. To date, several evolutionary algorithms have been applied to solve the challenging service placement problem by dealing with complex solution spaces to provide an optimal placement with relatively short execution times. In particular, the standard BPSO algorithm has been found to display a significant disadvantage, namely getting trapped in local optima and demonstrating a noticeable lack of robustness in dealing with service placement problems. Hence, to overcome the critical shortcomings associated with the standard BPSO, an enhanced binary particle swarm optimization (E-BPSO) algorithm is proposed, comprising a modification inspired by the continuous PSO for the particle position updating equation. Our proposed E-BPSO algorithm is shown to outperform state-of-the-art approaches using a real benchmark task in terms of both cost and execution time.
doi_str_mv 10.1007/s00521-022-07839-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762536189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762536189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4bec9f226c98b713b33b8bc49cf43620fdf8e88e3d4ea93ff6b3ee4a39cf62473</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKeAFz1U03xpmx43mT9gsMH0HNI02TLadEs6Zf71Zk7w5uk7vM_7fvAgdJ2S-5SQ4iEQktE0IZQmpOBQJtkJGqQMIAGS8VM0ICWLcc7gHF2EsCaEsJxnA7QdOTxxK-mUrvHYOun3eC59b1Wj8eJT-hbPNr1t7Zfsbefw7SQZzxezOyybZedtv2qx6TwO2n9YpfGmkUq32vXYOrzaV97WWDXdrj4kfSTbcInOjGyCvvq9Q_T-NHl7fEmms-fXx9E0UZCWfcIqrUpDaa5KXhUpVAAVrxQrlWGQU2JqwzXnGmqmZQnG5BVozSREIKesgCG6Oe5ufLfd6dCLdbfzLr4UtMhpBnnKy0jRI6V8F4LXRmy8baMFkRJxUCuOakVUK37UiiyW4FgKEXZL7f-m_2l9A3ujfRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762536189</pqid></control><display><type>article</type><title>An Enhanced Binary Particle Swarm Optimization (E-BPSO) algorithm for service placement in hybrid cloud platforms</title><source>SpringerLink Journals</source><creator>Abbes, Wissem ; Kechaou, Zied ; Hussain, Amir ; Qahtani, Abdulrahman M. ; Almutiry, Omar ; Dhahri, Habib ; Alimi, Adel M.</creator><creatorcontrib>Abbes, Wissem ; Kechaou, Zied ; Hussain, Amir ; Qahtani, Abdulrahman M. ; Almutiry, Omar ; Dhahri, Habib ; Alimi, Adel M.</creatorcontrib><description>Hybrid cloud platforms offer an attractive solution to organizations interested in implementing integrated private and public cloud applications to meet their profitability requirements. However, this can only be achieved by utilizing available resources while speeding up execution processes. Accordingly, deploying new applications entails dedicating some of these processes to a private cloud while allocating others to the public cloud. In this context, the current work aims to minimize relevant costs and deliver effective choices for an optimal service placement solution within minimal execution time. To date, several evolutionary algorithms have been applied to solve the challenging service placement problem by dealing with complex solution spaces to provide an optimal placement with relatively short execution times. In particular, the standard BPSO algorithm has been found to display a significant disadvantage, namely getting trapped in local optima and demonstrating a noticeable lack of robustness in dealing with service placement problems. Hence, to overcome the critical shortcomings associated with the standard BPSO, an enhanced binary particle swarm optimization (E-BPSO) algorithm is proposed, comprising a modification inspired by the continuous PSO for the particle position updating equation. Our proposed E-BPSO algorithm is shown to outperform state-of-the-art approaches using a real benchmark task in terms of both cost and execution time.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07839-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Cloud computing ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Evolutionary algorithms ; Image Processing and Computer Vision ; Original Article ; Particle swarm optimization ; Placement ; Probability and Statistics in Computer Science ; Profitability ; Solution space</subject><ispartof>Neural computing &amp; applications, 2023, Vol.35 (2), p.1343-1361</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4bec9f226c98b713b33b8bc49cf43620fdf8e88e3d4ea93ff6b3ee4a39cf62473</citedby><cites>FETCH-LOGICAL-c319t-4bec9f226c98b713b33b8bc49cf43620fdf8e88e3d4ea93ff6b3ee4a39cf62473</cites><orcidid>0000-0002-1874-5727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07839-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07839-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abbes, Wissem</creatorcontrib><creatorcontrib>Kechaou, Zied</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Qahtani, Abdulrahman M.</creatorcontrib><creatorcontrib>Almutiry, Omar</creatorcontrib><creatorcontrib>Dhahri, Habib</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><title>An Enhanced Binary Particle Swarm Optimization (E-BPSO) algorithm for service placement in hybrid cloud platforms</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Hybrid cloud platforms offer an attractive solution to organizations interested in implementing integrated private and public cloud applications to meet their profitability requirements. However, this can only be achieved by utilizing available resources while speeding up execution processes. Accordingly, deploying new applications entails dedicating some of these processes to a private cloud while allocating others to the public cloud. In this context, the current work aims to minimize relevant costs and deliver effective choices for an optimal service placement solution within minimal execution time. To date, several evolutionary algorithms have been applied to solve the challenging service placement problem by dealing with complex solution spaces to provide an optimal placement with relatively short execution times. In particular, the standard BPSO algorithm has been found to display a significant disadvantage, namely getting trapped in local optima and demonstrating a noticeable lack of robustness in dealing with service placement problems. Hence, to overcome the critical shortcomings associated with the standard BPSO, an enhanced binary particle swarm optimization (E-BPSO) algorithm is proposed, comprising a modification inspired by the continuous PSO for the particle position updating equation. Our proposed E-BPSO algorithm is shown to outperform state-of-the-art approaches using a real benchmark task in terms of both cost and execution time.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cloud computing</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Evolutionary algorithms</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Placement</subject><subject>Probability and Statistics in Computer Science</subject><subject>Profitability</subject><subject>Solution space</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9LwzAYhoMoOKf_gKeAFz1U03xpmx43mT9gsMH0HNI02TLadEs6Zf71Zk7w5uk7vM_7fvAgdJ2S-5SQ4iEQktE0IZQmpOBQJtkJGqQMIAGS8VM0ICWLcc7gHF2EsCaEsJxnA7QdOTxxK-mUrvHYOun3eC59b1Wj8eJT-hbPNr1t7Zfsbefw7SQZzxezOyybZedtv2qx6TwO2n9YpfGmkUq32vXYOrzaV97WWDXdrj4kfSTbcInOjGyCvvq9Q_T-NHl7fEmms-fXx9E0UZCWfcIqrUpDaa5KXhUpVAAVrxQrlWGQU2JqwzXnGmqmZQnG5BVozSREIKesgCG6Oe5ufLfd6dCLdbfzLr4UtMhpBnnKy0jRI6V8F4LXRmy8baMFkRJxUCuOakVUK37UiiyW4FgKEXZL7f-m_2l9A3ujfRE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abbes, Wissem</creator><creator>Kechaou, Zied</creator><creator>Hussain, Amir</creator><creator>Qahtani, Abdulrahman M.</creator><creator>Almutiry, Omar</creator><creator>Dhahri, Habib</creator><creator>Alimi, Adel M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1874-5727</orcidid></search><sort><creationdate>2023</creationdate><title>An Enhanced Binary Particle Swarm Optimization (E-BPSO) algorithm for service placement in hybrid cloud platforms</title><author>Abbes, Wissem ; Kechaou, Zied ; Hussain, Amir ; Qahtani, Abdulrahman M. ; Almutiry, Omar ; Dhahri, Habib ; Alimi, Adel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4bec9f226c98b713b33b8bc49cf43620fdf8e88e3d4ea93ff6b3ee4a39cf62473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cloud computing</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Evolutionary algorithms</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Placement</topic><topic>Probability and Statistics in Computer Science</topic><topic>Profitability</topic><topic>Solution space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbes, Wissem</creatorcontrib><creatorcontrib>Kechaou, Zied</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Qahtani, Abdulrahman M.</creatorcontrib><creatorcontrib>Almutiry, Omar</creatorcontrib><creatorcontrib>Dhahri, Habib</creatorcontrib><creatorcontrib>Alimi, Adel M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbes, Wissem</au><au>Kechaou, Zied</au><au>Hussain, Amir</au><au>Qahtani, Abdulrahman M.</au><au>Almutiry, Omar</au><au>Dhahri, Habib</au><au>Alimi, Adel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Binary Particle Swarm Optimization (E-BPSO) algorithm for service placement in hybrid cloud platforms</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><spage>1343</spage><epage>1361</epage><pages>1343-1361</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Hybrid cloud platforms offer an attractive solution to organizations interested in implementing integrated private and public cloud applications to meet their profitability requirements. However, this can only be achieved by utilizing available resources while speeding up execution processes. Accordingly, deploying new applications entails dedicating some of these processes to a private cloud while allocating others to the public cloud. In this context, the current work aims to minimize relevant costs and deliver effective choices for an optimal service placement solution within minimal execution time. To date, several evolutionary algorithms have been applied to solve the challenging service placement problem by dealing with complex solution spaces to provide an optimal placement with relatively short execution times. In particular, the standard BPSO algorithm has been found to display a significant disadvantage, namely getting trapped in local optima and demonstrating a noticeable lack of robustness in dealing with service placement problems. Hence, to overcome the critical shortcomings associated with the standard BPSO, an enhanced binary particle swarm optimization (E-BPSO) algorithm is proposed, comprising a modification inspired by the continuous PSO for the particle position updating equation. Our proposed E-BPSO algorithm is shown to outperform state-of-the-art approaches using a real benchmark task in terms of both cost and execution time.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07839-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1874-5727</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023, Vol.35 (2), p.1343-1361
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2762536189
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Cloud computing
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Evolutionary algorithms
Image Processing and Computer Vision
Original Article
Particle swarm optimization
Placement
Probability and Statistics in Computer Science
Profitability
Solution space
title An Enhanced Binary Particle Swarm Optimization (E-BPSO) algorithm for service placement in hybrid cloud platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T07%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Binary%20Particle%20Swarm%20Optimization%20(E-BPSO)%20algorithm%20for%20service%20placement%20in%20hybrid%20cloud%20platforms&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Abbes,%20Wissem&rft.date=2023&rft.volume=35&rft.issue=2&rft.spage=1343&rft.epage=1361&rft.pages=1343-1361&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07839-5&rft_dat=%3Cproquest_cross%3E2762536189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762536189&rft_id=info:pmid/&rfr_iscdi=true