Connectivity preserving trees in k‐connected or k‐edge‐connected graphs
We show that for k≤2 $k\le 2$ and any tree T $T$ of order m $m$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ with minimum degree at least max{Δ(T)+k,m−1} $\max \{{\rm{\Delta }}(T)+k,m-1\}$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-03, Vol.102 (3), p.423-435 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | 3 |
container_start_page | 423 |
container_title | Journal of graph theory |
container_volume | 102 |
creator | Hasunuma, Toru |
description | We show that for k≤2 $k\le 2$ and any tree T $T$ of order m $m$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ with minimum degree at least max{Δ(T)+k,m−1} $\max \{{\rm{\Delta }}(T)+k,m-1\}$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected), where Δ(T) ${\rm{\Delta }}(T)$ denotes the maximum degree of T $T$. We also show that for any k≥1 $k\ge 1$ and any tree T $T$ of order m≥4 $m\ge 4$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ of order n $n$ with minimum degree at least 2(k+m−p) $2(k+m-p)$ where p=k(k+1)+(m−1)(m−4)2n+2 $p=\unicode{x02308}\frac{k(k+1)+(m-1)(m-4)}{2n}\unicode{x02309}+2$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected). The lower bound of 2(k+m−p) $2(k+m-p)$ on the minimum degree of G $G$ can be improved to k+m−1 $k+m-1$ under several restrictions or assumptions. |
doi_str_mv | 10.1002/jgt.22878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762035973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762035973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3638-6f63a614c7b924baa3d0c37fe5fd1acadf32f13e814c7c723aa0a4d35cee41ff3</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpDLxBJCaGtGdfEicjqqCAiljKbLnOOaSUJNhpq248As_Ik5A2LAxMJ_367k76GbvkMOIAYrws2pEQqUyP2IBDJkPgPD1mA8AkCjMQ0Sk7834JXRxDOmBPk7qqyLTlpmx3QePIk9uUVRG0jsgHZRW8fX9-mR5RHtTuEFBe0J-8cLp59efsxOqVp4vfOWQvd7fzyX04e54-TG5mocEE0zCxCeqER0YuMhEttMYcDEpLsc25Njq3KCxHSvfESIFag45yjA1RxK3FIbvq7zau_liTb9WyXruqe6mETARgnEns1HWvjKu9d2RV48p37XaKg9q3pbq21KGtzo57uy1XtPsfqsfpvN_4Af-Gb98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762035973</pqid></control><display><type>article</type><title>Connectivity preserving trees in k‐connected or k‐edge‐connected graphs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hasunuma, Toru</creator><creatorcontrib>Hasunuma, Toru</creatorcontrib><description>We show that for k≤2 $k\le 2$ and any tree T $T$ of order m $m$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ with minimum degree at least max{Δ(T)+k,m−1} $\max \{{\rm{\Delta }}(T)+k,m-1\}$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected), where Δ(T) ${\rm{\Delta }}(T)$ denotes the maximum degree of T $T$. We also show that for any k≥1 $k\ge 1$ and any tree T $T$ of order m≥4 $m\ge 4$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ of order n $n$ with minimum degree at least 2(k+m−p) $2(k+m-p)$ where p=k(k+1)+(m−1)(m−4)2n+2 $p=\unicode{x02308}\frac{k(k+1)+(m-1)(m-4)}{2n}\unicode{x02309}+2$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected). The lower bound of 2(k+m−p) $2(k+m-p)$ on the minimum degree of G $G$ can be improved to k+m−1 $k+m-1$ under several restrictions or assumptions.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22878</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>connectivity ; k‐connected graphs ; k‐edge‐connected graphs ; Lower bounds ; trees</subject><ispartof>Journal of graph theory, 2023-03, Vol.102 (3), p.423-435</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3638-6f63a614c7b924baa3d0c37fe5fd1acadf32f13e814c7c723aa0a4d35cee41ff3</citedby><cites>FETCH-LOGICAL-c3638-6f63a614c7b924baa3d0c37fe5fd1acadf32f13e814c7c723aa0a4d35cee41ff3</cites><orcidid>0000-0002-4887-9179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hasunuma, Toru</creatorcontrib><title>Connectivity preserving trees in k‐connected or k‐edge‐connected graphs</title><title>Journal of graph theory</title><description>We show that for k≤2 $k\le 2$ and any tree T $T$ of order m $m$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ with minimum degree at least max{Δ(T)+k,m−1} $\max \{{\rm{\Delta }}(T)+k,m-1\}$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected), where Δ(T) ${\rm{\Delta }}(T)$ denotes the maximum degree of T $T$. We also show that for any k≥1 $k\ge 1$ and any tree T $T$ of order m≥4 $m\ge 4$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ of order n $n$ with minimum degree at least 2(k+m−p) $2(k+m-p)$ where p=k(k+1)+(m−1)(m−4)2n+2 $p=\unicode{x02308}\frac{k(k+1)+(m-1)(m-4)}{2n}\unicode{x02309}+2$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected). The lower bound of 2(k+m−p) $2(k+m-p)$ on the minimum degree of G $G$ can be improved to k+m−1 $k+m-1$ under several restrictions or assumptions.</description><subject>connectivity</subject><subject>k‐connected graphs</subject><subject>k‐edge‐connected graphs</subject><subject>Lower bounds</subject><subject>trees</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpDLxBJCaGtGdfEicjqqCAiljKbLnOOaSUJNhpq248As_Ik5A2LAxMJ_367k76GbvkMOIAYrws2pEQqUyP2IBDJkPgPD1mA8AkCjMQ0Sk7834JXRxDOmBPk7qqyLTlpmx3QePIk9uUVRG0jsgHZRW8fX9-mR5RHtTuEFBe0J-8cLp59efsxOqVp4vfOWQvd7fzyX04e54-TG5mocEE0zCxCeqER0YuMhEttMYcDEpLsc25Njq3KCxHSvfESIFag45yjA1RxK3FIbvq7zau_liTb9WyXruqe6mETARgnEns1HWvjKu9d2RV48p37XaKg9q3pbq21KGtzo57uy1XtPsfqsfpvN_4Af-Gb98</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Hasunuma, Toru</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4887-9179</orcidid></search><sort><creationdate>202303</creationdate><title>Connectivity preserving trees in k‐connected or k‐edge‐connected graphs</title><author>Hasunuma, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3638-6f63a614c7b924baa3d0c37fe5fd1acadf32f13e814c7c723aa0a4d35cee41ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>connectivity</topic><topic>k‐connected graphs</topic><topic>k‐edge‐connected graphs</topic><topic>Lower bounds</topic><topic>trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasunuma, Toru</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasunuma, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity preserving trees in k‐connected or k‐edge‐connected graphs</atitle><jtitle>Journal of graph theory</jtitle><date>2023-03</date><risdate>2023</risdate><volume>102</volume><issue>3</issue><spage>423</spage><epage>435</epage><pages>423-435</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>We show that for k≤2 $k\le 2$ and any tree T $T$ of order m $m$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ with minimum degree at least max{Δ(T)+k,m−1} $\max \{{\rm{\Delta }}(T)+k,m-1\}$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected), where Δ(T) ${\rm{\Delta }}(T)$ denotes the maximum degree of T $T$. We also show that for any k≥1 $k\ge 1$ and any tree T $T$ of order m≥4 $m\ge 4$, every k $k$‐connected (respectively, k $k$‐edge‐connected) graph G $G$ of order n $n$ with minimum degree at least 2(k+m−p) $2(k+m-p)$ where p=k(k+1)+(m−1)(m−4)2n+2 $p=\unicode{x02308}\frac{k(k+1)+(m-1)(m-4)}{2n}\unicode{x02309}+2$ contains a subtree T′≅T $T^{\prime} \cong T$ such that G−E(T′) $G-E(T^{\prime} )$ is k $k$‐connected (respectively, k $k$‐edge‐connected). The lower bound of 2(k+m−p) $2(k+m-p)$ on the minimum degree of G $G$ can be improved to k+m−1 $k+m-1$ under several restrictions or assumptions.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22878</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4887-9179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2023-03, Vol.102 (3), p.423-435 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_2762035973 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | connectivity k‐connected graphs k‐edge‐connected graphs Lower bounds trees |
title | Connectivity preserving trees in k‐connected or k‐edge‐connected graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20preserving%20trees%20in%20k%E2%80%90connected%20or%20k%E2%80%90edge%E2%80%90connected%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Hasunuma,%20Toru&rft.date=2023-03&rft.volume=102&rft.issue=3&rft.spage=423&rft.epage=435&rft.pages=423-435&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22878&rft_dat=%3Cproquest_cross%3E2762035973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762035973&rft_id=info:pmid/&rfr_iscdi=true |