Simulation of production processes and associated costs in mining using the Monte Carlo method
The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of e...
Gespeichert in:
Veröffentlicht in: | Journal of the South African Institute of Mining and Metallurgy 2022-12, Vol.122 (12), p.697-704 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 12 |
container_start_page | 697 |
container_title | Journal of the South African Institute of Mining and Metallurgy |
container_volume | 122 |
creator | Mathey, M. |
description | The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored. |
doi_str_mv | 10.17159/2411-9717/2079/2022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762016705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762016705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1582-6b2a629c906c93bbfc49423c80a872b6237251a559b1bfb80f5346b4c21f64423</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpH7CwxDrUnviRLFHFSypiAWyxbMemqRK7xMmCv8dpEZuZe0dXM6OD0DUlt1RSXq-BUVrUkso1EJktAThDi__pedYAvBDAy0u0SmlPSI4wwaRcoM-3tp86PbYx4OjxYYjNZI8uS-tScgnr0GCdUrStHl2DbUxjwm3AfRva8IWnNNdx5_BLDKPDGz10Efdu3MXmCl143SW3-utL9PFw_755Kravj8-bu21hKa-gEAa0gNrWRNi6NMZbVjMobUV0JcEIKCVwqjmvDTXeVMTzkgnDLFAvWE4u0c1pb_76e3JpVPs4DSGfVCAFECok4TnFTik7xJQG59VhaHs9_ChK1BGmmrGpGZuaYaoZZvkLDFNmiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762016705</pqid></control><display><type>article</type><title>Simulation of production processes and associated costs in mining using the Monte Carlo method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mathey, M.</creator><creatorcontrib>Mathey, M.</creatorcontrib><description>The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.</description><identifier>ISSN: 2225-6253</identifier><identifier>ISSN: 0038-223X</identifier><identifier>EISSN: 2411-9717</identifier><identifier>DOI: 10.17159/2411-9717/2079/2022</identifier><language>eng</language><publisher>Johannesburg: South African Institute of Mining and Metallurgy</publisher><subject>Availability ; Monte Carlo simulation ; Probabilistic models ; Production management ; Production planning ; Productivity ; Statistical analysis</subject><ispartof>Journal of the South African Institute of Mining and Metallurgy, 2022-12, Vol.122 (12), p.697-704</ispartof><rights>Copyright South African Institute of Mining and Metallurgy Dec 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Mathey, M.</creatorcontrib><title>Simulation of production processes and associated costs in mining using the Monte Carlo method</title><title>Journal of the South African Institute of Mining and Metallurgy</title><description>The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.</description><subject>Availability</subject><subject>Monte Carlo simulation</subject><subject>Probabilistic models</subject><subject>Production management</subject><subject>Production planning</subject><subject>Productivity</subject><subject>Statistical analysis</subject><issn>2225-6253</issn><issn>0038-223X</issn><issn>2411-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXpH7CwxDrUnviRLFHFSypiAWyxbMemqRK7xMmCv8dpEZuZe0dXM6OD0DUlt1RSXq-BUVrUkso1EJktAThDi__pedYAvBDAy0u0SmlPSI4wwaRcoM-3tp86PbYx4OjxYYjNZI8uS-tScgnr0GCdUrStHl2DbUxjwm3AfRva8IWnNNdx5_BLDKPDGz10Efdu3MXmCl143SW3-utL9PFw_755Kravj8-bu21hKa-gEAa0gNrWRNi6NMZbVjMobUV0JcEIKCVwqjmvDTXeVMTzkgnDLFAvWE4u0c1pb_76e3JpVPs4DSGfVCAFECok4TnFTik7xJQG59VhaHs9_ChK1BGmmrGpGZuaYaoZZvkLDFNmiQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mathey, M.</creator><general>South African Institute of Mining and Metallurgy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20221201</creationdate><title>Simulation of production processes and associated costs in mining using the Monte Carlo method</title><author>Mathey, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1582-6b2a629c906c93bbfc49423c80a872b6237251a559b1bfb80f5346b4c21f64423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Availability</topic><topic>Monte Carlo simulation</topic><topic>Probabilistic models</topic><topic>Production management</topic><topic>Production planning</topic><topic>Productivity</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathey, M.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the South African Institute of Mining and Metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathey, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of production processes and associated costs in mining using the Monte Carlo method</atitle><jtitle>Journal of the South African Institute of Mining and Metallurgy</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>122</volume><issue>12</issue><spage>697</spage><epage>704</epage><pages>697-704</pages><issn>2225-6253</issn><issn>0038-223X</issn><eissn>2411-9717</eissn><abstract>The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.</abstract><cop>Johannesburg</cop><pub>South African Institute of Mining and Metallurgy</pub><doi>10.17159/2411-9717/2079/2022</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2225-6253 |
ispartof | Journal of the South African Institute of Mining and Metallurgy, 2022-12, Vol.122 (12), p.697-704 |
issn | 2225-6253 0038-223X 2411-9717 |
language | eng |
recordid | cdi_proquest_journals_2762016705 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Availability Monte Carlo simulation Probabilistic models Production management Production planning Productivity Statistical analysis |
title | Simulation of production processes and associated costs in mining using the Monte Carlo method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20production%20processes%20and%20associated%20costs%20in%20mining%20using%20the%20Monte%20Carlo%20method&rft.jtitle=Journal%20of%20the%20South%20African%20Institute%20of%20Mining%20and%20Metallurgy&rft.au=Mathey,%20M.&rft.date=2022-12-01&rft.volume=122&rft.issue=12&rft.spage=697&rft.epage=704&rft.pages=697-704&rft.issn=2225-6253&rft.eissn=2411-9717&rft_id=info:doi/10.17159/2411-9717/2079/2022&rft_dat=%3Cproquest_cross%3E2762016705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762016705&rft_id=info:pmid/&rfr_iscdi=true |