Simulation of production processes and associated costs in mining using the Monte Carlo method

The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the South African Institute of Mining and Metallurgy 2022-12, Vol.122 (12), p.697-704
1. Verfasser: Mathey, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 12
container_start_page 697
container_title Journal of the South African Institute of Mining and Metallurgy
container_volume 122
creator Mathey, M.
description The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.
doi_str_mv 10.17159/2411-9717/2079/2022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2762016705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2762016705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1582-6b2a629c906c93bbfc49423c80a872b6237251a559b1bfb80f5346b4c21f64423</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpH7CwxDrUnviRLFHFSypiAWyxbMemqRK7xMmCv8dpEZuZe0dXM6OD0DUlt1RSXq-BUVrUkso1EJktAThDi__pedYAvBDAy0u0SmlPSI4wwaRcoM-3tp86PbYx4OjxYYjNZI8uS-tScgnr0GCdUrStHl2DbUxjwm3AfRva8IWnNNdx5_BLDKPDGz10Efdu3MXmCl143SW3-utL9PFw_755Kravj8-bu21hKa-gEAa0gNrWRNi6NMZbVjMobUV0JcEIKCVwqjmvDTXeVMTzkgnDLFAvWE4u0c1pb_76e3JpVPs4DSGfVCAFECok4TnFTik7xJQG59VhaHs9_ChK1BGmmrGpGZuaYaoZZvkLDFNmiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762016705</pqid></control><display><type>article</type><title>Simulation of production processes and associated costs in mining using the Monte Carlo method</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mathey, M.</creator><creatorcontrib>Mathey, M.</creatorcontrib><description>The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.</description><identifier>ISSN: 2225-6253</identifier><identifier>ISSN: 0038-223X</identifier><identifier>EISSN: 2411-9717</identifier><identifier>DOI: 10.17159/2411-9717/2079/2022</identifier><language>eng</language><publisher>Johannesburg: South African Institute of Mining and Metallurgy</publisher><subject>Availability ; Monte Carlo simulation ; Probabilistic models ; Production management ; Production planning ; Productivity ; Statistical analysis</subject><ispartof>Journal of the South African Institute of Mining and Metallurgy, 2022-12, Vol.122 (12), p.697-704</ispartof><rights>Copyright South African Institute of Mining and Metallurgy Dec 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Mathey, M.</creatorcontrib><title>Simulation of production processes and associated costs in mining using the Monte Carlo method</title><title>Journal of the South African Institute of Mining and Metallurgy</title><description>The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.</description><subject>Availability</subject><subject>Monte Carlo simulation</subject><subject>Probabilistic models</subject><subject>Production management</subject><subject>Production planning</subject><subject>Productivity</subject><subject>Statistical analysis</subject><issn>2225-6253</issn><issn>0038-223X</issn><issn>2411-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXpH7CwxDrUnviRLFHFSypiAWyxbMemqRK7xMmCv8dpEZuZe0dXM6OD0DUlt1RSXq-BUVrUkso1EJktAThDi__pedYAvBDAy0u0SmlPSI4wwaRcoM-3tp86PbYx4OjxYYjNZI8uS-tScgnr0GCdUrStHl2DbUxjwm3AfRva8IWnNNdx5_BLDKPDGz10Efdu3MXmCl143SW3-utL9PFw_755Kravj8-bu21hKa-gEAa0gNrWRNi6NMZbVjMobUV0JcEIKCVwqjmvDTXeVMTzkgnDLFAvWE4u0c1pb_76e3JpVPs4DSGfVCAFECok4TnFTik7xJQG59VhaHs9_ChK1BGmmrGpGZuaYaoZZvkLDFNmiQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mathey, M.</creator><general>South African Institute of Mining and Metallurgy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20221201</creationdate><title>Simulation of production processes and associated costs in mining using the Monte Carlo method</title><author>Mathey, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1582-6b2a629c906c93bbfc49423c80a872b6237251a559b1bfb80f5346b4c21f64423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Availability</topic><topic>Monte Carlo simulation</topic><topic>Probabilistic models</topic><topic>Production management</topic><topic>Production planning</topic><topic>Productivity</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathey, M.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the South African Institute of Mining and Metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathey, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of production processes and associated costs in mining using the Monte Carlo method</atitle><jtitle>Journal of the South African Institute of Mining and Metallurgy</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>122</volume><issue>12</issue><spage>697</spage><epage>704</epage><pages>697-704</pages><issn>2225-6253</issn><issn>0038-223X</issn><eissn>2411-9717</eissn><abstract>The application of the Monte Carlo technique to production planning and everyday economic decisionmaking in mine production management is demonstrated. The logic is detailed using an example of underground production with continuous miners (CMs) and truck haulage. It is argued that availability of equipment and personnel are the predominant variables influencing mine output and productivity and that those availabilities may be well represented by binomial probability distributions. The probabilistic model is implemented in a standard Excel® spreadsheet with Palisade's @Risk add-on to facilitate simulations. Starting from model calibration against data obtained from a mine's annual reports, some general interdependencies of availability, utilization, productivity, and costs of production processes are outlined. Finally, several possible options and their consequences as regards production improvements are explored.</abstract><cop>Johannesburg</cop><pub>South African Institute of Mining and Metallurgy</pub><doi>10.17159/2411-9717/2079/2022</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2225-6253
ispartof Journal of the South African Institute of Mining and Metallurgy, 2022-12, Vol.122 (12), p.697-704
issn 2225-6253
0038-223X
2411-9717
language eng
recordid cdi_proquest_journals_2762016705
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Availability
Monte Carlo simulation
Probabilistic models
Production management
Production planning
Productivity
Statistical analysis
title Simulation of production processes and associated costs in mining using the Monte Carlo method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20production%20processes%20and%20associated%20costs%20in%20mining%20using%20the%20Monte%20Carlo%20method&rft.jtitle=Journal%20of%20the%20South%20African%20Institute%20of%20Mining%20and%20Metallurgy&rft.au=Mathey,%20M.&rft.date=2022-12-01&rft.volume=122&rft.issue=12&rft.spage=697&rft.epage=704&rft.pages=697-704&rft.issn=2225-6253&rft.eissn=2411-9717&rft_id=info:doi/10.17159/2411-9717/2079/2022&rft_dat=%3Cproquest_cross%3E2762016705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762016705&rft_id=info:pmid/&rfr_iscdi=true