Sliding mode control of switched systems: A geometric algebra approach

Geometric algebra (GA) is proposed as a mathematical framework for revisiting fundamental aspects of sliding mode control (SMC) in nonlinear, switch‐controlled, single input systems. Sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2023-01, Vol.25 (1), p.15-25
Hauptverfasser: Sira Ramírez, Hebertt, Aguilar‐Orduña, Mario A., Gómez‐León, Brian C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 15
container_title Asian journal of control
container_volume 25
creator Sira Ramírez, Hebertt
Aguilar‐Orduña, Mario A.
Gómez‐León, Brian C.
description Geometric algebra (GA) is proposed as a mathematical framework for revisiting fundamental aspects of sliding mode control (SMC) in nonlinear, switch‐controlled, single input systems. Sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control, and the characterization of ideal sliding dynamics, are all re‐examined using a geometric algebra (GA) standpoint. Two illustrative examples, from switched power electronics, are presented using the GA language.
doi_str_mv 10.1002/asjc.2781
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761830049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761830049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-2787f682c887157b0c377b3e4cc08586e787001ce8fcfa873ead3c0ee494cbde3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw4B9E4sShW9K0ScptmhgfmsRhcI5S1906tctIOk3992SMKydb8mO_1kPIPWcTzlg6tWELk1RpfkFGvBBZIlkhLmOfS55omebX5CaELWOSC52PyGLVNlWzW9POVUjB7XrvWupqGo5NDxusaBhCj114ojO6Rtdh7xugtl1j6S21-713Fja35Kq2bcC7vzomX4vnz_lrsvx4eZvPlgmkheJJfEzVUqegteK5KhkIpUqBGQDTuZYY54xxQF1DbbUSaCsBDDErMigrFGPycL4bY78PGHqzdQe_i5EmVZJrwVhWROrxTIF3IXiszd43nfWD4cycNJmTJnPSFNnpmT02LQ7_g2a2ep__bvwAlZ9pcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761830049</pqid></control><display><type>article</type><title>Sliding mode control of switched systems: A geometric algebra approach</title><source>Wiley Journals</source><creator>Sira Ramírez, Hebertt ; Aguilar‐Orduña, Mario A. ; Gómez‐León, Brian C.</creator><creatorcontrib>Sira Ramírez, Hebertt ; Aguilar‐Orduña, Mario A. ; Gómez‐León, Brian C.</creatorcontrib><description>Geometric algebra (GA) is proposed as a mathematical framework for revisiting fundamental aspects of sliding mode control (SMC) in nonlinear, switch‐controlled, single input systems. Sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control, and the characterization of ideal sliding dynamics, are all re‐examined using a geometric algebra (GA) standpoint. Two illustrative examples, from switched power electronics, are presented using the GA language.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2781</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algebra ; geometric algebra ; Nonlinear control ; Sliding mode control</subject><ispartof>Asian journal of control, 2023-01, Vol.25 (1), p.15-25</ispartof><rights>2022 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2023 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-2787f682c887157b0c377b3e4cc08586e787001ce8fcfa873ead3c0ee494cbde3</citedby><cites>FETCH-LOGICAL-c2971-2787f682c887157b0c377b3e4cc08586e787001ce8fcfa873ead3c0ee494cbde3</cites><orcidid>0000-0001-6773-9545 ; 0000-0003-0118-4764 ; 0000-0002-0414-3864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.2781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.2781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sira Ramírez, Hebertt</creatorcontrib><creatorcontrib>Aguilar‐Orduña, Mario A.</creatorcontrib><creatorcontrib>Gómez‐León, Brian C.</creatorcontrib><title>Sliding mode control of switched systems: A geometric algebra approach</title><title>Asian journal of control</title><description>Geometric algebra (GA) is proposed as a mathematical framework for revisiting fundamental aspects of sliding mode control (SMC) in nonlinear, switch‐controlled, single input systems. Sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control, and the characterization of ideal sliding dynamics, are all re‐examined using a geometric algebra (GA) standpoint. Two illustrative examples, from switched power electronics, are presented using the GA language.</description><subject>Algebra</subject><subject>geometric algebra</subject><subject>Nonlinear control</subject><subject>Sliding mode control</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw4B9E4sShW9K0ScptmhgfmsRhcI5S1906tctIOk3992SMKydb8mO_1kPIPWcTzlg6tWELk1RpfkFGvBBZIlkhLmOfS55omebX5CaELWOSC52PyGLVNlWzW9POVUjB7XrvWupqGo5NDxusaBhCj114ojO6Rtdh7xugtl1j6S21-713Fja35Kq2bcC7vzomX4vnz_lrsvx4eZvPlgmkheJJfEzVUqegteK5KhkIpUqBGQDTuZYY54xxQF1DbbUSaCsBDDErMigrFGPycL4bY78PGHqzdQe_i5EmVZJrwVhWROrxTIF3IXiszd43nfWD4cycNJmTJnPSFNnpmT02LQ7_g2a2ep__bvwAlZ9pcA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Sira Ramírez, Hebertt</creator><creator>Aguilar‐Orduña, Mario A.</creator><creator>Gómez‐León, Brian C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6773-9545</orcidid><orcidid>https://orcid.org/0000-0003-0118-4764</orcidid><orcidid>https://orcid.org/0000-0002-0414-3864</orcidid></search><sort><creationdate>202301</creationdate><title>Sliding mode control of switched systems: A geometric algebra approach</title><author>Sira Ramírez, Hebertt ; Aguilar‐Orduña, Mario A. ; Gómez‐León, Brian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-2787f682c887157b0c377b3e4cc08586e787001ce8fcfa873ead3c0ee494cbde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>geometric algebra</topic><topic>Nonlinear control</topic><topic>Sliding mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sira Ramírez, Hebertt</creatorcontrib><creatorcontrib>Aguilar‐Orduña, Mario A.</creatorcontrib><creatorcontrib>Gómez‐León, Brian C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sira Ramírez, Hebertt</au><au>Aguilar‐Orduña, Mario A.</au><au>Gómez‐León, Brian C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding mode control of switched systems: A geometric algebra approach</atitle><jtitle>Asian journal of control</jtitle><date>2023-01</date><risdate>2023</risdate><volume>25</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>Geometric algebra (GA) is proposed as a mathematical framework for revisiting fundamental aspects of sliding mode control (SMC) in nonlinear, switch‐controlled, single input systems. Sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control, and the characterization of ideal sliding dynamics, are all re‐examined using a geometric algebra (GA) standpoint. Two illustrative examples, from switched power electronics, are presented using the GA language.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2781</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6773-9545</orcidid><orcidid>https://orcid.org/0000-0003-0118-4764</orcidid><orcidid>https://orcid.org/0000-0002-0414-3864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2023-01, Vol.25 (1), p.15-25
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2761830049
source Wiley Journals
subjects Algebra
geometric algebra
Nonlinear control
Sliding mode control
title Sliding mode control of switched systems: A geometric algebra approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20mode%20control%20of%20switched%20systems:%20A%20geometric%20algebra%20approach&rft.jtitle=Asian%20journal%20of%20control&rft.au=Sira%20Ram%C3%ADrez,%20Hebertt&rft.date=2023-01&rft.volume=25&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2781&rft_dat=%3Cproquest_cross%3E2761830049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761830049&rft_id=info:pmid/&rfr_iscdi=true