Orthogonal polynomials through complex matrix graph theory

We have employed direct complex matrix graph theory techniques to generate orthogonal polynomials such as Hermite polynomials, Chebyshev polynomials of both kinds and Laguerre polynomials of any order without invoking recursion. The techniques involve complex adjacency matrices of graphs and direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2023, Vol.61 (1), p.144-165
1. Verfasser: Balasubramanian, Krishnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 1
container_start_page 144
container_title Journal of mathematical chemistry
container_volume 61
creator Balasubramanian, Krishnan
description We have employed direct complex matrix graph theory techniques to generate orthogonal polynomials such as Hermite polynomials, Chebyshev polynomials of both kinds and Laguerre polynomials of any order without invoking recursion. The techniques involve complex adjacency matrices of graphs and direct computations of their characteristic polynomials, thus providing an elegant technique for the direct computation of these polynomials to high degrees and all roots of these polynomials. Furthermore a tree pruning technique is developed for rapid computations of orthogonal polynomials associated with dendrimers or clustered complete complex-weighted graphs connected by bridges. Tables of several orthogonal polynomials up to degrees 160 are explicitly constructed through these robust complex graph matrix methods. Applications to chemical problems are pointed out.
doi_str_mv 10.1007/s10910-022-01415-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761703771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761703771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-64956aea331331db835c081af34f412ea58eb3021c83e8036ac280c059483b0d3</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFPBc_S9pGkSbzJ0CoNd9ByyLm032qUmHXTf3mgFb8KDd3i__5_Hj5BbhHsEkA8RQSNQYIwC5ijoeEZmKCSjSml5TmbAhKZaarwkVzHuAUCrQs3I4zoMja_9wbZZ79vTwXc728ZsaII_1k1W-q5v3Zh1dgi7MauD7Zt0dD6crslFlVB387vn5OPl-X3xSlfr5dviaUVLluuBFrkWhXWWc0yz3SguSlBoK55XOTJnhXIbDgxLxZ0CXtiSKShB6FzxDWz5nNxNvX3wn0cXB7P3x5AejobJAiVwKTFRbKLK4GMMrjJ92HU2nAyC-XZkJkcmOTI_jsyYQnwKxQQfahf-qv9JfQG-HGmR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761703771</pqid></control><display><type>article</type><title>Orthogonal polynomials through complex matrix graph theory</title><source>Springer Nature - Complete Springer Journals</source><creator>Balasubramanian, Krishnan</creator><creatorcontrib>Balasubramanian, Krishnan</creatorcontrib><description>We have employed direct complex matrix graph theory techniques to generate orthogonal polynomials such as Hermite polynomials, Chebyshev polynomials of both kinds and Laguerre polynomials of any order without invoking recursion. The techniques involve complex adjacency matrices of graphs and direct computations of their characteristic polynomials, thus providing an elegant technique for the direct computation of these polynomials to high degrees and all roots of these polynomials. Furthermore a tree pruning technique is developed for rapid computations of orthogonal polynomials associated with dendrimers or clustered complete complex-weighted graphs connected by bridges. Tables of several orthogonal polynomials up to degrees 160 are explicitly constructed through these robust complex graph matrix methods. Applications to chemical problems are pointed out.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-022-01415-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chebyshev approximation ; Chemistry ; Chemistry and Materials Science ; Dendrimers ; Graph theory ; Graphs ; Hermite polynomials ; Math. Applications in Chemistry ; Matrix methods ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2023, Vol.61 (1), p.144-165</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-64956aea331331db835c081af34f412ea58eb3021c83e8036ac280c059483b0d3</citedby><cites>FETCH-LOGICAL-c249t-64956aea331331db835c081af34f412ea58eb3021c83e8036ac280c059483b0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-022-01415-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-022-01415-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Balasubramanian, Krishnan</creatorcontrib><title>Orthogonal polynomials through complex matrix graph theory</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>We have employed direct complex matrix graph theory techniques to generate orthogonal polynomials such as Hermite polynomials, Chebyshev polynomials of both kinds and Laguerre polynomials of any order without invoking recursion. The techniques involve complex adjacency matrices of graphs and direct computations of their characteristic polynomials, thus providing an elegant technique for the direct computation of these polynomials to high degrees and all roots of these polynomials. Furthermore a tree pruning technique is developed for rapid computations of orthogonal polynomials associated with dendrimers or clustered complete complex-weighted graphs connected by bridges. Tables of several orthogonal polynomials up to degrees 160 are explicitly constructed through these robust complex graph matrix methods. Applications to chemical problems are pointed out.</description><subject>Chebyshev approximation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dendrimers</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hermite polynomials</subject><subject>Math. Applications in Chemistry</subject><subject>Matrix methods</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFPBc_S9pGkSbzJ0CoNd9ByyLm032qUmHXTf3mgFb8KDd3i__5_Hj5BbhHsEkA8RQSNQYIwC5ijoeEZmKCSjSml5TmbAhKZaarwkVzHuAUCrQs3I4zoMja_9wbZZ79vTwXc728ZsaII_1k1W-q5v3Zh1dgi7MauD7Zt0dD6crslFlVB387vn5OPl-X3xSlfr5dviaUVLluuBFrkWhXWWc0yz3SguSlBoK55XOTJnhXIbDgxLxZ0CXtiSKShB6FzxDWz5nNxNvX3wn0cXB7P3x5AejobJAiVwKTFRbKLK4GMMrjJ92HU2nAyC-XZkJkcmOTI_jsyYQnwKxQQfahf-qv9JfQG-HGmR</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Balasubramanian, Krishnan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Orthogonal polynomials through complex matrix graph theory</title><author>Balasubramanian, Krishnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-64956aea331331db835c081af34f412ea58eb3021c83e8036ac280c059483b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chebyshev approximation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dendrimers</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hermite polynomials</topic><topic>Math. Applications in Chemistry</topic><topic>Matrix methods</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Krishnan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Krishnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal polynomials through complex matrix graph theory</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><issue>1</issue><spage>144</spage><epage>165</epage><pages>144-165</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>We have employed direct complex matrix graph theory techniques to generate orthogonal polynomials such as Hermite polynomials, Chebyshev polynomials of both kinds and Laguerre polynomials of any order without invoking recursion. The techniques involve complex adjacency matrices of graphs and direct computations of their characteristic polynomials, thus providing an elegant technique for the direct computation of these polynomials to high degrees and all roots of these polynomials. Furthermore a tree pruning technique is developed for rapid computations of orthogonal polynomials associated with dendrimers or clustered complete complex-weighted graphs connected by bridges. Tables of several orthogonal polynomials up to degrees 160 are explicitly constructed through these robust complex graph matrix methods. Applications to chemical problems are pointed out.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-022-01415-x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2023, Vol.61 (1), p.144-165
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2761703771
source Springer Nature - Complete Springer Journals
subjects Chebyshev approximation
Chemistry
Chemistry and Materials Science
Dendrimers
Graph theory
Graphs
Hermite polynomials
Math. Applications in Chemistry
Matrix methods
Original Paper
Physical Chemistry
Theoretical and Computational Chemistry
title Orthogonal polynomials through complex matrix graph theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20polynomials%20through%20complex%20matrix%20graph%20theory&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Balasubramanian,%20Krishnan&rft.date=2023&rft.volume=61&rft.issue=1&rft.spage=144&rft.epage=165&rft.pages=144-165&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-022-01415-x&rft_dat=%3Cproquest_cross%3E2761703771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761703771&rft_id=info:pmid/&rfr_iscdi=true