Impact of endpoint structure attributes on local information algorithms based on link prediction
The structural similarity based link prediction algorithms mainly exploit the information of network topology, such as links and nodes, to predict the potential links in complex networks. Among these algorithms, the local information similarity based algorithms have attracted the extensive attention...
Gespeichert in:
Veröffentlicht in: | Computing 2023, Vol.105 (1), p.115-129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Computing |
container_volume | 105 |
creator | Tian, Yang Nie, Gaofeng Tian, Hui Cui, Qimei |
description | The structural similarity based link prediction algorithms mainly exploit the information of network topology, such as links and nodes, to predict the potential links in complex networks. Among these algorithms, the local information similarity based algorithms have attracted the extensive attentions from the majority of researchers due to their low complexity and general applicability. The algorithms mainly exploit the attributes of common neighbors on the second-order transmission paths to predict the connection probability between the unconnected nodes, but ignore the structure attributes of endpoints. The structure attributes of an endpoint can be quantified as its influence resources, which make an important contribution to link prediction. To heighten the performances of local information based algorithms, this paper exploits the different structure attributes of endpoints to express the influence resources, and explores the contributions of the different endpoint attributes to local information algorithms. Extensive simulations on 12 real benchmark datasets show that, in most cases, the node degree expressing the influence resource makes the greatest contribution to improve the performances of the local information algorithms. Specifically, DCN, DAA and DRA algorithm possess the best prediction performances in 9, 5 and 7 datasets, respectively. Furthermore, compared with 6 mainstream algorithms, DRA as the best improved algorithm shows the optimal prediction performances in 8 datasets. |
doi_str_mv | 10.1007/s00607-022-01115-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761643926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761643926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-521fb58c83a272d4f40f521ed9789d22faf8a2bdb2104f0069cd229295ddcc093</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKuA62gl_cxSBh8DA24U3MV0HmOP3Z02SS-crzdOC-5cFVzOraIOQpcUrilAdRMASqgIMEaAUlqQ_RFa0DwrSQFFdYwWABRIXhevp-gshB0AsKzmC_S27kepInYWm0GPrh0iDtFPKk7eYBmjb5spmoDdgDunZIfbwTrfy9imRHZb59v43gfcyGD0gWqHDzx6o1v1w5yjEyu7YC5-5xK93N89rx7J5ulhvbrdEMVyHknBqG2KWtWZZBXTuc3BpsxoXtVcM2alrSVrdMMo5DZ9y1VKOeOF1koBz5boat47evc5mRDFzk1-SCcFq0pa5hlnZaLYTCnvQvDGitG3vfRfgoL4MSlmkyKZFAeTYp9K2VwKCR62xv-t_qf1DUU7eI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761643926</pqid></control><display><type>article</type><title>Impact of endpoint structure attributes on local information algorithms based on link prediction</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tian, Yang ; Nie, Gaofeng ; Tian, Hui ; Cui, Qimei</creator><creatorcontrib>Tian, Yang ; Nie, Gaofeng ; Tian, Hui ; Cui, Qimei</creatorcontrib><description>The structural similarity based link prediction algorithms mainly exploit the information of network topology, such as links and nodes, to predict the potential links in complex networks. Among these algorithms, the local information similarity based algorithms have attracted the extensive attentions from the majority of researchers due to their low complexity and general applicability. The algorithms mainly exploit the attributes of common neighbors on the second-order transmission paths to predict the connection probability between the unconnected nodes, but ignore the structure attributes of endpoints. The structure attributes of an endpoint can be quantified as its influence resources, which make an important contribution to link prediction. To heighten the performances of local information based algorithms, this paper exploits the different structure attributes of endpoints to express the influence resources, and explores the contributions of the different endpoint attributes to local information algorithms. Extensive simulations on 12 real benchmark datasets show that, in most cases, the node degree expressing the influence resource makes the greatest contribution to improve the performances of the local information algorithms. Specifically, DCN, DAA and DRA algorithm possess the best prediction performances in 9, 5 and 7 datasets, respectively. Furthermore, compared with 6 mainstream algorithms, DRA as the best improved algorithm shows the optimal prediction performances in 8 datasets.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-022-01115-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Artificial Intelligence ; Complexity ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Datasets ; Information Systems Applications (incl.Internet) ; Network analysis ; Network topologies ; Nodes ; Performance prediction ; Regular Paper ; Similarity ; Software Engineering</subject><ispartof>Computing, 2023, Vol.105 (1), p.115-129</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-521fb58c83a272d4f40f521ed9789d22faf8a2bdb2104f0069cd229295ddcc093</citedby><cites>FETCH-LOGICAL-c249t-521fb58c83a272d4f40f521ed9789d22faf8a2bdb2104f0069cd229295ddcc093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-022-01115-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-022-01115-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Nie, Gaofeng</creatorcontrib><creatorcontrib>Tian, Hui</creatorcontrib><creatorcontrib>Cui, Qimei</creatorcontrib><title>Impact of endpoint structure attributes on local information algorithms based on link prediction</title><title>Computing</title><addtitle>Computing</addtitle><description>The structural similarity based link prediction algorithms mainly exploit the information of network topology, such as links and nodes, to predict the potential links in complex networks. Among these algorithms, the local information similarity based algorithms have attracted the extensive attentions from the majority of researchers due to their low complexity and general applicability. The algorithms mainly exploit the attributes of common neighbors on the second-order transmission paths to predict the connection probability between the unconnected nodes, but ignore the structure attributes of endpoints. The structure attributes of an endpoint can be quantified as its influence resources, which make an important contribution to link prediction. To heighten the performances of local information based algorithms, this paper exploits the different structure attributes of endpoints to express the influence resources, and explores the contributions of the different endpoint attributes to local information algorithms. Extensive simulations on 12 real benchmark datasets show that, in most cases, the node degree expressing the influence resource makes the greatest contribution to improve the performances of the local information algorithms. Specifically, DCN, DAA and DRA algorithm possess the best prediction performances in 9, 5 and 7 datasets, respectively. Furthermore, compared with 6 mainstream algorithms, DRA as the best improved algorithm shows the optimal prediction performances in 8 datasets.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Network analysis</subject><subject>Network topologies</subject><subject>Nodes</subject><subject>Performance prediction</subject><subject>Regular Paper</subject><subject>Similarity</subject><subject>Software Engineering</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKBDEQRYMoOI7-gKuA62gl_cxSBh8DA24U3MV0HmOP3Z02SS-crzdOC-5cFVzOraIOQpcUrilAdRMASqgIMEaAUlqQ_RFa0DwrSQFFdYwWABRIXhevp-gshB0AsKzmC_S27kepInYWm0GPrh0iDtFPKk7eYBmjb5spmoDdgDunZIfbwTrfy9imRHZb59v43gfcyGD0gWqHDzx6o1v1w5yjEyu7YC5-5xK93N89rx7J5ulhvbrdEMVyHknBqG2KWtWZZBXTuc3BpsxoXtVcM2alrSVrdMMo5DZ9y1VKOeOF1koBz5boat47evc5mRDFzk1-SCcFq0pa5hlnZaLYTCnvQvDGitG3vfRfgoL4MSlmkyKZFAeTYp9K2VwKCR62xv-t_qf1DUU7eI4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tian, Yang</creator><creator>Nie, Gaofeng</creator><creator>Tian, Hui</creator><creator>Cui, Qimei</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Impact of endpoint structure attributes on local information algorithms based on link prediction</title><author>Tian, Yang ; Nie, Gaofeng ; Tian, Hui ; Cui, Qimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-521fb58c83a272d4f40f521ed9789d22faf8a2bdb2104f0069cd229295ddcc093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Network analysis</topic><topic>Network topologies</topic><topic>Nodes</topic><topic>Performance prediction</topic><topic>Regular Paper</topic><topic>Similarity</topic><topic>Software Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Nie, Gaofeng</creatorcontrib><creatorcontrib>Tian, Hui</creatorcontrib><creatorcontrib>Cui, Qimei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yang</au><au>Nie, Gaofeng</au><au>Tian, Hui</au><au>Cui, Qimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of endpoint structure attributes on local information algorithms based on link prediction</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2023</date><risdate>2023</risdate><volume>105</volume><issue>1</issue><spage>115</spage><epage>129</epage><pages>115-129</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>The structural similarity based link prediction algorithms mainly exploit the information of network topology, such as links and nodes, to predict the potential links in complex networks. Among these algorithms, the local information similarity based algorithms have attracted the extensive attentions from the majority of researchers due to their low complexity and general applicability. The algorithms mainly exploit the attributes of common neighbors on the second-order transmission paths to predict the connection probability between the unconnected nodes, but ignore the structure attributes of endpoints. The structure attributes of an endpoint can be quantified as its influence resources, which make an important contribution to link prediction. To heighten the performances of local information based algorithms, this paper exploits the different structure attributes of endpoints to express the influence resources, and explores the contributions of the different endpoint attributes to local information algorithms. Extensive simulations on 12 real benchmark datasets show that, in most cases, the node degree expressing the influence resource makes the greatest contribution to improve the performances of the local information algorithms. Specifically, DCN, DAA and DRA algorithm possess the best prediction performances in 9, 5 and 7 datasets, respectively. Furthermore, compared with 6 mainstream algorithms, DRA as the best improved algorithm shows the optimal prediction performances in 8 datasets.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-022-01115-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2023, Vol.105 (1), p.115-129 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_2761643926 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Complexity Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Datasets Information Systems Applications (incl.Internet) Network analysis Network topologies Nodes Performance prediction Regular Paper Similarity Software Engineering |
title | Impact of endpoint structure attributes on local information algorithms based on link prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20endpoint%20structure%20attributes%20on%20local%20information%20algorithms%20based%20on%20link%20prediction&rft.jtitle=Computing&rft.au=Tian,%20Yang&rft.date=2023&rft.volume=105&rft.issue=1&rft.spage=115&rft.epage=129&rft.pages=115-129&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-022-01115-z&rft_dat=%3Cproquest_cross%3E2761643926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761643926&rft_id=info:pmid/&rfr_iscdi=true |