Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1
The stabilization conditions of fractional order systems (FOS) with order 0 < μ < 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is p...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems automation, and systems, 2023, Vol.21 (1), p.52-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | International journal of control, automation, and systems |
container_volume | 21 |
creator | Zhang, Xuefeng Han, Zerui |
description | The stabilization conditions of fractional order systems (FOS) with order 0 <
μ
< 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples. |
doi_str_mv | 10.1007/s12555-021-0416-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761566671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761566671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-9f33d33d763a78af8bb360224edf16e8930c160822a22d761c77c1039ecdd2883</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeA5-gkbdMUvMjqqrCwwrrnkE1T7W63qUmK9N18Bp_JLBU8CcPMHL5_GD6ELilcU4D8xlOWZRkBRgmklBN2hCYMICMpFOwYTWhWCMLTlJ-iM--3AJyzIp-g3SqoUGus2hLfD63ax33Zh64PeG5MuVF6h2e2Dc42uLIOv9hmCLaL1LrVxgVVt3julA61bVWDl640Dq8GH8ze4886vGPAt_j7KzZ6jk4q1Xhz8TunaD1_eJ09kcXy8Xl2tyCaFiKQokqSMlbOE5ULVYnNJuHAWGrKinIjigQ05SAYU4xFiuo81xSSwuiyZEIkU3Q13u2c_eiND3Jrexff85JFPOOc5zRSdKS0s947U8nO1XvlBklBHpzK0amMTuXBqWQxw8aMj2z7Ztzf5f9DP_noeJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761566671</pqid></control><display><type>article</type><title>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Xuefeng ; Han, Zerui</creator><creatorcontrib>Zhang, Xuefeng ; Han, Zerui</creatorcontrib><description>The stabilization conditions of fractional order systems (FOS) with order 0 <
μ
< 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-021-0416-2</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Control ; Control systems ; Engineering ; Feedback control ; Linear matrix inequalities ; Mathematical analysis ; Mechatronics ; Output feedback ; Regular Papers ; Robotics ; Stability criteria ; Stabilization</subject><ispartof>International journal of control, automation, and systems, 2023, Vol.21 (1), p.52-60</ispartof><rights>ICROS, KIEE and Springer 2023</rights><rights>ICROS, KIEE and Springer 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-9f33d33d763a78af8bb360224edf16e8930c160822a22d761c77c1039ecdd2883</cites><orcidid>0000-0002-8930-5091 ; 0000-0002-2831-5747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12555-021-0416-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12555-021-0416-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Han, Zerui</creatorcontrib><title>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>The stabilization conditions of fractional order systems (FOS) with order 0 <
μ
< 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.</description><subject>Control</subject><subject>Control systems</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Output feedback</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Stability criteria</subject><subject>Stabilization</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeA5-gkbdMUvMjqqrCwwrrnkE1T7W63qUmK9N18Bp_JLBU8CcPMHL5_GD6ELilcU4D8xlOWZRkBRgmklBN2hCYMICMpFOwYTWhWCMLTlJ-iM--3AJyzIp-g3SqoUGus2hLfD63ax33Zh64PeG5MuVF6h2e2Dc42uLIOv9hmCLaL1LrVxgVVt3julA61bVWDl640Dq8GH8ze4886vGPAt_j7KzZ6jk4q1Xhz8TunaD1_eJ09kcXy8Xl2tyCaFiKQokqSMlbOE5ULVYnNJuHAWGrKinIjigQ05SAYU4xFiuo81xSSwuiyZEIkU3Q13u2c_eiND3Jrexff85JFPOOc5zRSdKS0s947U8nO1XvlBklBHpzK0amMTuXBqWQxw8aMj2z7Ztzf5f9DP_noeJ4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Xuefeng</creator><creator>Han, Zerui</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8930-5091</orcidid><orcidid>https://orcid.org/0000-0002-2831-5747</orcidid></search><sort><creationdate>2023</creationdate><title>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1</title><author>Zhang, Xuefeng ; Han, Zerui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-9f33d33d763a78af8bb360224edf16e8930c160822a22d761c77c1039ecdd2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control</topic><topic>Control systems</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Output feedback</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Stability criteria</topic><topic>Stabilization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Han, Zerui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuefeng</au><au>Han, Zerui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2023</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>The stabilization conditions of fractional order systems (FOS) with order 0 <
μ
< 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-021-0416-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8930-5091</orcidid><orcidid>https://orcid.org/0000-0002-2831-5747</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-6446 |
ispartof | International journal of control, automation, and systems, 2023, Vol.21 (1), p.52-60 |
issn | 1598-6446 2005-4092 |
language | eng |
recordid | cdi_proquest_journals_2761566671 |
source | Springer Nature - Complete Springer Journals |
subjects | Control Control systems Engineering Feedback control Linear matrix inequalities Mathematical analysis Mechatronics Output feedback Regular Papers Robotics Stability criteria Stabilization |
title | Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20and%20Dynamic%20Output%20Feedback%20Control%20for%20Polytopic%20Uncertain%20Fractional%20Order%20Systems%20with%200%20%3C%20%CE%BC%20%3C%201&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Zhang,%20Xuefeng&rft.date=2023&rft.volume=21&rft.issue=1&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-021-0416-2&rft_dat=%3Cproquest_cross%3E2761566671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761566671&rft_id=info:pmid/&rfr_iscdi=true |