Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1

The stabilization conditions of fractional order systems (FOS) with order 0 < μ < 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems automation, and systems, 2023, Vol.21 (1), p.52-60
Hauptverfasser: Zhang, Xuefeng, Han, Zerui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 52
container_title International journal of control, automation, and systems
container_volume 21
creator Zhang, Xuefeng
Han, Zerui
description The stabilization conditions of fractional order systems (FOS) with order 0 < μ < 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.
doi_str_mv 10.1007/s12555-021-0416-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761566671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761566671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-9f33d33d763a78af8bb360224edf16e8930c160822a22d761c77c1039ecdd2883</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeA5-gkbdMUvMjqqrCwwrrnkE1T7W63qUmK9N18Bp_JLBU8CcPMHL5_GD6ELilcU4D8xlOWZRkBRgmklBN2hCYMICMpFOwYTWhWCMLTlJ-iM--3AJyzIp-g3SqoUGus2hLfD63ax33Zh64PeG5MuVF6h2e2Dc42uLIOv9hmCLaL1LrVxgVVt3julA61bVWDl640Dq8GH8ze4886vGPAt_j7KzZ6jk4q1Xhz8TunaD1_eJ09kcXy8Xl2tyCaFiKQokqSMlbOE5ULVYnNJuHAWGrKinIjigQ05SAYU4xFiuo81xSSwuiyZEIkU3Q13u2c_eiND3Jrexff85JFPOOc5zRSdKS0s947U8nO1XvlBklBHpzK0amMTuXBqWQxw8aMj2z7Ztzf5f9DP_noeJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761566671</pqid></control><display><type>article</type><title>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 &lt; μ &lt; 1</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Xuefeng ; Han, Zerui</creator><creatorcontrib>Zhang, Xuefeng ; Han, Zerui</creatorcontrib><description>The stabilization conditions of fractional order systems (FOS) with order 0 &lt; μ &lt; 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.</description><identifier>ISSN: 1598-6446</identifier><identifier>EISSN: 2005-4092</identifier><identifier>DOI: 10.1007/s12555-021-0416-2</identifier><language>eng</language><publisher>Bucheon / Seoul: Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</publisher><subject>Control ; Control systems ; Engineering ; Feedback control ; Linear matrix inequalities ; Mathematical analysis ; Mechatronics ; Output feedback ; Regular Papers ; Robotics ; Stability criteria ; Stabilization</subject><ispartof>International journal of control, automation, and systems, 2023, Vol.21 (1), p.52-60</ispartof><rights>ICROS, KIEE and Springer 2023</rights><rights>ICROS, KIEE and Springer 2023.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-9f33d33d763a78af8bb360224edf16e8930c160822a22d761c77c1039ecdd2883</cites><orcidid>0000-0002-8930-5091 ; 0000-0002-2831-5747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12555-021-0416-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12555-021-0416-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Han, Zerui</creatorcontrib><title>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 &lt; μ &lt; 1</title><title>International journal of control, automation, and systems</title><addtitle>Int. J. Control Autom. Syst</addtitle><description>The stabilization conditions of fractional order systems (FOS) with order 0 &lt; μ &lt; 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.</description><subject>Control</subject><subject>Control systems</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Output feedback</subject><subject>Regular Papers</subject><subject>Robotics</subject><subject>Stability criteria</subject><subject>Stabilization</subject><issn>1598-6446</issn><issn>2005-4092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeA5-gkbdMUvMjqqrCwwrrnkE1T7W63qUmK9N18Bp_JLBU8CcPMHL5_GD6ELilcU4D8xlOWZRkBRgmklBN2hCYMICMpFOwYTWhWCMLTlJ-iM--3AJyzIp-g3SqoUGus2hLfD63ax33Zh64PeG5MuVF6h2e2Dc42uLIOv9hmCLaL1LrVxgVVt3julA61bVWDl640Dq8GH8ze4886vGPAt_j7KzZ6jk4q1Xhz8TunaD1_eJ09kcXy8Xl2tyCaFiKQokqSMlbOE5ULVYnNJuHAWGrKinIjigQ05SAYU4xFiuo81xSSwuiyZEIkU3Q13u2c_eiND3Jrexff85JFPOOc5zRSdKS0s947U8nO1XvlBklBHpzK0amMTuXBqWQxw8aMj2z7Ztzf5f9DP_noeJ4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Xuefeng</creator><creator>Han, Zerui</creator><general>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8930-5091</orcidid><orcidid>https://orcid.org/0000-0002-2831-5747</orcidid></search><sort><creationdate>2023</creationdate><title>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 &lt; μ &lt; 1</title><author>Zhang, Xuefeng ; Han, Zerui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-9f33d33d763a78af8bb360224edf16e8930c160822a22d761c77c1039ecdd2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control</topic><topic>Control systems</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Output feedback</topic><topic>Regular Papers</topic><topic>Robotics</topic><topic>Stability criteria</topic><topic>Stabilization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuefeng</creatorcontrib><creatorcontrib>Han, Zerui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control, automation, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuefeng</au><au>Han, Zerui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 &lt; μ &lt; 1</atitle><jtitle>International journal of control, automation, and systems</jtitle><stitle>Int. J. Control Autom. Syst</stitle><date>2023</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>1598-6446</issn><eissn>2005-4092</eissn><abstract>The stabilization conditions of fractional order systems (FOS) with order 0 &lt; μ &lt; 1 via two different types of output feedback controls are discussed in this paper. Firstly, by using variable substitution, an alternative condition that guarantees autonomous FOS to be asymptotically stable is proposed, the condition contains only a single variable. Then, based on this stability criterion, the stabilization conditions for FOS and polytopic FOS are given in the form of direct linear matrix inequality. And the obtained results can overcome some drawbacks in the existing work. Furthermore, we extend the results to the singular fractional order case. Finally, the effectiveness of the results is verified by numerical examples.</abstract><cop>Bucheon / Seoul</cop><pub>Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers</pub><doi>10.1007/s12555-021-0416-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8930-5091</orcidid><orcidid>https://orcid.org/0000-0002-2831-5747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1598-6446
ispartof International journal of control, automation, and systems, 2023, Vol.21 (1), p.52-60
issn 1598-6446
2005-4092
language eng
recordid cdi_proquest_journals_2761566671
source Springer Nature - Complete Springer Journals
subjects Control
Control systems
Engineering
Feedback control
Linear matrix inequalities
Mathematical analysis
Mechatronics
Output feedback
Regular Papers
Robotics
Stability criteria
Stabilization
title Static and Dynamic Output Feedback Control for Polytopic Uncertain Fractional Order Systems with 0 < μ < 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20and%20Dynamic%20Output%20Feedback%20Control%20for%20Polytopic%20Uncertain%20Fractional%20Order%20Systems%20with%200%20%3C%20%CE%BC%20%3C%201&rft.jtitle=International%20journal%20of%20control,%20automation,%20and%20systems&rft.au=Zhang,%20Xuefeng&rft.date=2023&rft.volume=21&rft.issue=1&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=1598-6446&rft.eissn=2005-4092&rft_id=info:doi/10.1007/s12555-021-0416-2&rft_dat=%3Cproquest_cross%3E2761566671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761566671&rft_id=info:pmid/&rfr_iscdi=true