Configuration Path Control
Reinforcement learning methods often produce brittle policies — policies that perform well during training, but generalize poorly beyond their direct training experience, thus becoming unstable under small disturbances. To address this issue, we propose a method for stabilizing a control policy in t...
Gespeichert in:
Veröffentlicht in: | International journal of control, automation, and systems automation, and systems, 2023, Vol.21 (1), p.306-317 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!