Configuration Path Control

Reinforcement learning methods often produce brittle policies — policies that perform well during training, but generalize poorly beyond their direct training experience, thus becoming unstable under small disturbances. To address this issue, we propose a method for stabilizing a control policy in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems automation, and systems, 2023, Vol.21 (1), p.306-317
1. Verfasser: Pankov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!