ZnO/Fe3O4 Nanoparticles Encapsulated in N-Doped Porous Carbon for Extraordinary Microwave Absorption
To acquire a superior microwave absorber, ZnO/Fe 3 O 4 nanoparticles have been successfully embedded into an N-doped honeycomb-like porous carbon (NPC) framework via a two-step process. The structure, morphology, and electromagnetic wave absorption properties of ZnO/Fe 3 O 4 /NPC composites have bee...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2023-02, Vol.52 (2), p.1233-1241 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1241 |
---|---|
container_issue | 2 |
container_start_page | 1233 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Su, Zhanwen Dai, Peng Yang, Mengnan Zhang, Wen Zhang, Ziyun |
description | To acquire a superior microwave absorber, ZnO/Fe
3
O
4
nanoparticles have been successfully embedded into an N-doped honeycomb-like porous carbon (NPC) framework via a two-step process. The structure, morphology, and electromagnetic wave absorption properties of ZnO/Fe
3
O
4
/NPC composites have been characterized. Benefitting from the unique hierarchical porous architecture, the balanced impedance between ZnO and Fe
3
O
4
, and the synergistic effects between ZnO/Fe
3
O
4
nanoparticles and the carbon matrix, ZnO/Fe
3
O
4
/NPC exhibited an outstanding electromagnetic wave absorption performance. The minimum reflection loss (
R
L
) could reach − 51.1 dB at 12.9 GHz when the thickness is 3.7 mm, with a wide effective absorption bandwidth (
R
L
≤ 10 dB) of 5.28 GHz at a thickness of 2.2 mm. It is apparent that ZnO/Fe
3
O
4
/NPC has great potential as a high-efficiency microwave absorber.
Graphical Abstract |
doi_str_mv | 10.1007/s11664-022-10074-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761445057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761445057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4273ad16c6cf65b7994d3e6a53b86d0a1a0c992215a36ecf2064c0e2173c1dc23</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwHPsXn52u6x1FaF2npQEC8hm83Klpqsya4f_96tK3jz9GZgZt4wCJ0DvQRKs0kCUEoQyhjZc0HYARqBFJzAVD0dohHlCohkXB6jk5S2lIKEKYxQ-ew3k6XjG4HXxofGxLa2O5fwwlvTpG5nWlfi2uM1uQpND-9DDF3CcxOL4HEVIl58ttGEWNbexC98V9sYPsy7w7Mihdi0dfCn6Kgyu-TOfu8YPS4XD_Mbstpc385nK2I55C0RLOOmBGWVrZQssjwXJXfKSF5MVUkNGGrznDGQhitnK0aVsNQxyLiF0jI-RhdDbhPDW-dSq7ehi75_qVmmQAhJZdar2KDqi6YUXaWbWL_23TVQvV9PD2vqfs0fLvQ-mg-m1Iv9i4t_0f-4vgHRXndr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761445057</pqid></control><display><type>article</type><title>ZnO/Fe3O4 Nanoparticles Encapsulated in N-Doped Porous Carbon for Extraordinary Microwave Absorption</title><source>SpringerLink Journals - AutoHoldings</source><creator>Su, Zhanwen ; Dai, Peng ; Yang, Mengnan ; Zhang, Wen ; Zhang, Ziyun</creator><creatorcontrib>Su, Zhanwen ; Dai, Peng ; Yang, Mengnan ; Zhang, Wen ; Zhang, Ziyun</creatorcontrib><description>To acquire a superior microwave absorber, ZnO/Fe
3
O
4
nanoparticles have been successfully embedded into an N-doped honeycomb-like porous carbon (NPC) framework via a two-step process. The structure, morphology, and electromagnetic wave absorption properties of ZnO/Fe
3
O
4
/NPC composites have been characterized. Benefitting from the unique hierarchical porous architecture, the balanced impedance between ZnO and Fe
3
O
4
, and the synergistic effects between ZnO/Fe
3
O
4
nanoparticles and the carbon matrix, ZnO/Fe
3
O
4
/NPC exhibited an outstanding electromagnetic wave absorption performance. The minimum reflection loss (
R
L
) could reach − 51.1 dB at 12.9 GHz when the thickness is 3.7 mm, with a wide effective absorption bandwidth (
R
L
≤ 10 dB) of 5.28 GHz at a thickness of 2.2 mm. It is apparent that ZnO/Fe
3
O
4
/NPC has great potential as a high-efficiency microwave absorber.
Graphical Abstract</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-10074-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bandwidths ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electromagnetic radiation ; Electronics and Microelectronics ; Instrumentation ; Iron oxides ; Materials Science ; Microwave absorbers ; Microwave absorption ; Morphology ; Nanocomposites ; Nanoparticles ; Nitrogen ; Optical and Electronic Materials ; Original Research Article ; Permeability ; Scanning electron microscopy ; Solid State Physics ; Spectrum analysis ; Synergistic effect ; Thickness ; Zinc oxide</subject><ispartof>Journal of electronic materials, 2023-02, Vol.52 (2), p.1233-1241</ispartof><rights>The Minerals, Metals & Materials Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4273ad16c6cf65b7994d3e6a53b86d0a1a0c992215a36ecf2064c0e2173c1dc23</citedby><cites>FETCH-LOGICAL-c319t-4273ad16c6cf65b7994d3e6a53b86d0a1a0c992215a36ecf2064c0e2173c1dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-10074-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-10074-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Su, Zhanwen</creatorcontrib><creatorcontrib>Dai, Peng</creatorcontrib><creatorcontrib>Yang, Mengnan</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Zhang, Ziyun</creatorcontrib><title>ZnO/Fe3O4 Nanoparticles Encapsulated in N-Doped Porous Carbon for Extraordinary Microwave Absorption</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>To acquire a superior microwave absorber, ZnO/Fe
3
O
4
nanoparticles have been successfully embedded into an N-doped honeycomb-like porous carbon (NPC) framework via a two-step process. The structure, morphology, and electromagnetic wave absorption properties of ZnO/Fe
3
O
4
/NPC composites have been characterized. Benefitting from the unique hierarchical porous architecture, the balanced impedance between ZnO and Fe
3
O
4
, and the synergistic effects between ZnO/Fe
3
O
4
nanoparticles and the carbon matrix, ZnO/Fe
3
O
4
/NPC exhibited an outstanding electromagnetic wave absorption performance. The minimum reflection loss (
R
L
) could reach − 51.1 dB at 12.9 GHz when the thickness is 3.7 mm, with a wide effective absorption bandwidth (
R
L
≤ 10 dB) of 5.28 GHz at a thickness of 2.2 mm. It is apparent that ZnO/Fe
3
O
4
/NPC has great potential as a high-efficiency microwave absorber.
Graphical Abstract</description><subject>Bandwidths</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electromagnetic radiation</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Iron oxides</subject><subject>Materials Science</subject><subject>Microwave absorbers</subject><subject>Microwave absorption</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Permeability</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><subject>Thickness</subject><subject>Zinc oxide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEUDKJgrf4BTwHPsXn52u6x1FaF2npQEC8hm83Klpqsya4f_96tK3jz9GZgZt4wCJ0DvQRKs0kCUEoQyhjZc0HYARqBFJzAVD0dohHlCohkXB6jk5S2lIKEKYxQ-ew3k6XjG4HXxofGxLa2O5fwwlvTpG5nWlfi2uM1uQpND-9DDF3CcxOL4HEVIl58ttGEWNbexC98V9sYPsy7w7Mihdi0dfCn6Kgyu-TOfu8YPS4XD_Mbstpc385nK2I55C0RLOOmBGWVrZQssjwXJXfKSF5MVUkNGGrznDGQhitnK0aVsNQxyLiF0jI-RhdDbhPDW-dSq7ehi75_qVmmQAhJZdar2KDqi6YUXaWbWL_23TVQvV9PD2vqfs0fLvQ-mg-m1Iv9i4t_0f-4vgHRXndr</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Su, Zhanwen</creator><creator>Dai, Peng</creator><creator>Yang, Mengnan</creator><creator>Zhang, Wen</creator><creator>Zhang, Ziyun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230201</creationdate><title>ZnO/Fe3O4 Nanoparticles Encapsulated in N-Doped Porous Carbon for Extraordinary Microwave Absorption</title><author>Su, Zhanwen ; Dai, Peng ; Yang, Mengnan ; Zhang, Wen ; Zhang, Ziyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4273ad16c6cf65b7994d3e6a53b86d0a1a0c992215a36ecf2064c0e2173c1dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bandwidths</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electromagnetic radiation</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Iron oxides</topic><topic>Materials Science</topic><topic>Microwave absorbers</topic><topic>Microwave absorption</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Permeability</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><topic>Thickness</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Zhanwen</creatorcontrib><creatorcontrib>Dai, Peng</creatorcontrib><creatorcontrib>Yang, Mengnan</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Zhang, Ziyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Zhanwen</au><au>Dai, Peng</au><au>Yang, Mengnan</au><au>Zhang, Wen</au><au>Zhang, Ziyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZnO/Fe3O4 Nanoparticles Encapsulated in N-Doped Porous Carbon for Extraordinary Microwave Absorption</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>52</volume><issue>2</issue><spage>1233</spage><epage>1241</epage><pages>1233-1241</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>To acquire a superior microwave absorber, ZnO/Fe
3
O
4
nanoparticles have been successfully embedded into an N-doped honeycomb-like porous carbon (NPC) framework via a two-step process. The structure, morphology, and electromagnetic wave absorption properties of ZnO/Fe
3
O
4
/NPC composites have been characterized. Benefitting from the unique hierarchical porous architecture, the balanced impedance between ZnO and Fe
3
O
4
, and the synergistic effects between ZnO/Fe
3
O
4
nanoparticles and the carbon matrix, ZnO/Fe
3
O
4
/NPC exhibited an outstanding electromagnetic wave absorption performance. The minimum reflection loss (
R
L
) could reach − 51.1 dB at 12.9 GHz when the thickness is 3.7 mm, with a wide effective absorption bandwidth (
R
L
≤ 10 dB) of 5.28 GHz at a thickness of 2.2 mm. It is apparent that ZnO/Fe
3
O
4
/NPC has great potential as a high-efficiency microwave absorber.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-10074-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-02, Vol.52 (2), p.1233-1241 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2761445057 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bandwidths Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Electromagnetic radiation Electronics and Microelectronics Instrumentation Iron oxides Materials Science Microwave absorbers Microwave absorption Morphology Nanocomposites Nanoparticles Nitrogen Optical and Electronic Materials Original Research Article Permeability Scanning electron microscopy Solid State Physics Spectrum analysis Synergistic effect Thickness Zinc oxide |
title | ZnO/Fe3O4 Nanoparticles Encapsulated in N-Doped Porous Carbon for Extraordinary Microwave Absorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZnO/Fe3O4%20Nanoparticles%20Encapsulated%20in%20N-Doped%20Porous%20Carbon%20for%20Extraordinary%20Microwave%20Absorption&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Su,%20Zhanwen&rft.date=2023-02-01&rft.volume=52&rft.issue=2&rft.spage=1233&rft.epage=1241&rft.pages=1233-1241&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-10074-2&rft_dat=%3Cproquest_cross%3E2761445057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761445057&rft_id=info:pmid/&rfr_iscdi=true |