Human body stimuli-responsive flexible polyurethane electrospun composite fibers-based piezoelectric nanogenerators

Piezoelectric materials derived from piezoelectrically inactive polymers and lead-free functional nanofillers have received a lot of attention for their ability to convert mechanical energy associated with various human body movements into electrical signals. Herein, the fabrication and performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2023, Vol.58 (1), p.317-336
Hauptverfasser: Juraij, Kandiyil, Shafeeq, V. H., Chandran, Akash M., Vasudevan, Suni, Mural, Prasanna Kumar S., Sujith, Athiyanathil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Piezoelectric materials derived from piezoelectrically inactive polymers and lead-free functional nanofillers have received a lot of attention for their ability to convert mechanical energy associated with various human body movements into electrical signals. Herein, the fabrication and performance of a novel thermoplastic polyurethane/nanohydroxyapatite electrospun composite membrane-based piezoelectric nanogenerator (PENG) is using polydimethylsiloxane (PDMS). The nanohydroxyapatite (nHA) and oxidized multiwalled carbon nanotube (o-MWCNT) fillers converted a non-piezoelectric PU polymer material into a piezoelectrically active composite material. Compared to pristine electrospun PU, every composite sample showed improved mechanical properties, thermal stability, dielectric properties, and piezoelectric characteristics. Dynamic-contact electrostatic force microscopy (DC-EFM) confirmed the piezo-ferroelectric characteristics of all composite samples. The nHA/o-MWCNT hybrid filler-modified optimized nanofibrous sample (PHAT) showed outstanding dielectric properties and piezoelectric characteristics. The PHAT-based PENG showed the highest stimuli-responsive output voltage in the 0.4–32 V range, whereas the pristine electrospun PU-based PENG showed only an output voltage of 0.08–5.75 V from various stimuli. The flexible PU electrospun composite membrane can be considered a new potential material for harvesting electrical energy from the mechanical energy associated with various human body motions. Graphical abstract
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-022-08086-8