Stretchable and self-healable PVA–Nickel–Borax electrodes for supercapacitor applications
In this study, a self-healing and stretchable PVA–nickel–borax (PNB) material for supercapacitor applications is presented. The PNB solid-flexible samples were fabricated by chemical composition method and characterized with different techniques to investigate their supercapacitor potential. In orde...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023, Vol.34 (1), p.1, Article 1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Demirel, Serkan Topkaya, Ramazan Cicek, Kenan |
description | In this study, a self-healing and stretchable PVA–nickel–borax (PNB) material for supercapacitor applications is presented. The PNB solid-flexible samples were fabricated by chemical composition method and characterized with different techniques to investigate their supercapacitor potential. In order to characterize structural properties of PNB samples, SEM, XRD and Raman techniques were utilized. For the capacitive properties, however, CV analysis was performed. The result of the CV analysis and the calculations showed that a charge and discharge capacitances as high as 88.95 F/g (49.42 Wh/kg energy density and 18.75 kW/kg a power density) and 33.75 F/g (35.58 Wh/kg energy density and 13.50 power density kW/kg), respectively, can be obtained for nickel based PVA-Borax polymers. In addition to their high capacitance, PNB capacitors were also shown to be flexible and self-healable in this study. Therefore, it is believed that this study will be an important reference for future flexible and self-healable supercapacitors. |
doi_str_mv | 10.1007/s10854-022-09392-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761444157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761444157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-157e7123f36c71f877d245f871902cff8a068bc24237af4545125ab789af7e503</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTQ5SSYzyyreoKjgBTcS0vTETh07YzIF3fkOvqFPYtoR3Lk6F_7_P4ePkH3ODjlj-ihyVihJGQBlpSiBwgYZcKUFlQU8bpIBK5WmUgFsk50Y54yxXIpiQJ5uu4Cdm9lJjZldTLOItacztPV6c_Mw-v78uqrcC9apOW6Cfc-wRteFZoox803I4rLF4GxrXdWl0bZtXTnbVc0i7pItb-uIe791SO7PTu9OLuj4-vzyZDSmTvCyo-lR1ByEF7nT3BdaT0GqVHnJwHlfWJYXEwcShLZeKqk4KDvRRWm9RsXEkBz0uW1o3pYYOzNvlmGRThrQOZdSrlgMCfQqF5oYA3rThurVhg_DmVlhND1GkzCaNUYDySR6U0zixTOGv-h_XD81JndW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761444157</pqid></control><display><type>article</type><title>Stretchable and self-healable PVA–Nickel–Borax electrodes for supercapacitor applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demirel, Serkan ; Topkaya, Ramazan ; Cicek, Kenan</creator><creatorcontrib>Demirel, Serkan ; Topkaya, Ramazan ; Cicek, Kenan</creatorcontrib><description>In this study, a self-healing and stretchable PVA–nickel–borax (PNB) material for supercapacitor applications is presented. The PNB solid-flexible samples were fabricated by chemical composition method and characterized with different techniques to investigate their supercapacitor potential. In order to characterize structural properties of PNB samples, SEM, XRD and Raman techniques were utilized. For the capacitive properties, however, CV analysis was performed. The result of the CV analysis and the calculations showed that a charge and discharge capacitances as high as 88.95 F/g (49.42 Wh/kg energy density and 18.75 kW/kg a power density) and 33.75 F/g (35.58 Wh/kg energy density and 13.50 power density kW/kg), respectively, can be obtained for nickel based PVA-Borax polymers. In addition to their high capacitance, PNB capacitors were also shown to be flexible and self-healable in this study. Therefore, it is believed that this study will be an important reference for future flexible and self-healable supercapacitors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-09392-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Addition polymerization ; Borax ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Electrodes ; Energy storage ; Materials Science ; Nickel ; Optical and Electronic Materials ; Polymers ; Polyvinyl alcohol ; Solidification ; Solids ; Supercapacitors</subject><ispartof>Journal of materials science. Materials in electronics, 2023, Vol.34 (1), p.1, Article 1</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-157e7123f36c71f877d245f871902cff8a068bc24237af4545125ab789af7e503</citedby><cites>FETCH-LOGICAL-c319t-157e7123f36c71f877d245f871902cff8a068bc24237af4545125ab789af7e503</cites><orcidid>0000-0003-1158-4956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-09392-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-09392-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Demirel, Serkan</creatorcontrib><creatorcontrib>Topkaya, Ramazan</creatorcontrib><creatorcontrib>Cicek, Kenan</creatorcontrib><title>Stretchable and self-healable PVA–Nickel–Borax electrodes for supercapacitor applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this study, a self-healing and stretchable PVA–nickel–borax (PNB) material for supercapacitor applications is presented. The PNB solid-flexible samples were fabricated by chemical composition method and characterized with different techniques to investigate their supercapacitor potential. In order to characterize structural properties of PNB samples, SEM, XRD and Raman techniques were utilized. For the capacitive properties, however, CV analysis was performed. The result of the CV analysis and the calculations showed that a charge and discharge capacitances as high as 88.95 F/g (49.42 Wh/kg energy density and 18.75 kW/kg a power density) and 33.75 F/g (35.58 Wh/kg energy density and 13.50 power density kW/kg), respectively, can be obtained for nickel based PVA-Borax polymers. In addition to their high capacitance, PNB capacitors were also shown to be flexible and self-healable in this study. Therefore, it is believed that this study will be an important reference for future flexible and self-healable supercapacitors.</description><subject>Addition polymerization</subject><subject>Borax</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Solidification</subject><subject>Solids</subject><subject>Supercapacitors</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTQ5SSYzyyreoKjgBTcS0vTETh07YzIF3fkOvqFPYtoR3Lk6F_7_P4ePkH3ODjlj-ihyVihJGQBlpSiBwgYZcKUFlQU8bpIBK5WmUgFsk50Y54yxXIpiQJ5uu4Cdm9lJjZldTLOItacztPV6c_Mw-v78uqrcC9apOW6Cfc-wRteFZoox803I4rLF4GxrXdWl0bZtXTnbVc0i7pItb-uIe791SO7PTu9OLuj4-vzyZDSmTvCyo-lR1ByEF7nT3BdaT0GqVHnJwHlfWJYXEwcShLZeKqk4KDvRRWm9RsXEkBz0uW1o3pYYOzNvlmGRThrQOZdSrlgMCfQqF5oYA3rThurVhg_DmVlhND1GkzCaNUYDySR6U0zixTOGv-h_XD81JndW</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Demirel, Serkan</creator><creator>Topkaya, Ramazan</creator><creator>Cicek, Kenan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1158-4956</orcidid></search><sort><creationdate>2023</creationdate><title>Stretchable and self-healable PVA–Nickel–Borax electrodes for supercapacitor applications</title><author>Demirel, Serkan ; Topkaya, Ramazan ; Cicek, Kenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-157e7123f36c71f877d245f871902cff8a068bc24237af4545125ab789af7e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Addition polymerization</topic><topic>Borax</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Solidification</topic><topic>Solids</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirel, Serkan</creatorcontrib><creatorcontrib>Topkaya, Ramazan</creatorcontrib><creatorcontrib>Cicek, Kenan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirel, Serkan</au><au>Topkaya, Ramazan</au><au>Cicek, Kenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretchable and self-healable PVA–Nickel–Borax electrodes for supercapacitor applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>1</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this study, a self-healing and stretchable PVA–nickel–borax (PNB) material for supercapacitor applications is presented. The PNB solid-flexible samples were fabricated by chemical composition method and characterized with different techniques to investigate their supercapacitor potential. In order to characterize structural properties of PNB samples, SEM, XRD and Raman techniques were utilized. For the capacitive properties, however, CV analysis was performed. The result of the CV analysis and the calculations showed that a charge and discharge capacitances as high as 88.95 F/g (49.42 Wh/kg energy density and 18.75 kW/kg a power density) and 33.75 F/g (35.58 Wh/kg energy density and 13.50 power density kW/kg), respectively, can be obtained for nickel based PVA-Borax polymers. In addition to their high capacitance, PNB capacitors were also shown to be flexible and self-healable in this study. Therefore, it is believed that this study will be an important reference for future flexible and self-healable supercapacitors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-09392-2</doi><orcidid>https://orcid.org/0000-0003-1158-4956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023, Vol.34 (1), p.1, Article 1 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2761444157 |
source | SpringerLink Journals - AutoHoldings |
subjects | Addition polymerization Borax Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Electrodes Energy storage Materials Science Nickel Optical and Electronic Materials Polymers Polyvinyl alcohol Solidification Solids Supercapacitors |
title | Stretchable and self-healable PVA–Nickel–Borax electrodes for supercapacitor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretchable%20and%20self-healable%20PVA%E2%80%93Nickel%E2%80%93Borax%20electrodes%20for%20supercapacitor%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Demirel,%20Serkan&rft.date=2023&rft.volume=34&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=1&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-09392-2&rft_dat=%3Cproquest_cross%3E2761444157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761444157&rft_id=info:pmid/&rfr_iscdi=true |