The effect of relative density on the response of sand to internal fluidization

Fluidization, in the geotechnical engineering context, is a failure mechanism that can occur during piping, leakage in distribution pipes or leakage through the sheet pile walls and can lead to severe consequences. This phenomenon will occur when the sand bed is subjected to an upward-facing flow. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2023, Vol.18 (1), p.319-333
Hauptverfasser: Akrami, Sepideh, Bezuijen, Adam, Tehrani, Faraz S., Terwindt, Jarno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 1
container_start_page 319
container_title Acta geotechnica
container_volume 18
creator Akrami, Sepideh
Bezuijen, Adam
Tehrani, Faraz S.
Terwindt, Jarno
description Fluidization, in the geotechnical engineering context, is a failure mechanism that can occur during piping, leakage in distribution pipes or leakage through the sheet pile walls and can lead to severe consequences. This phenomenon will occur when the sand bed is subjected to an upward-facing flow. In this case, with sufficient hydraulic gradient, the effective stresses and the contact forces between soil particles will be zero, resulting in mobilization and fluidization of the soil. This paper presents small-scale laboratory tests involving two sands and relative densities (RD). The hydraulic behavior of the sand before and during the fluidization process is presented and analyzed using measurements and analytical calculations. The dimensions of the cavity and the extent of the fluidized zone are presented and investigated by performing image analysis using digital image correlation (DIC). The analysis indicates that an increase in flow rate and porosity of the sand specimen characterized the onset of soil deformation. The findings also demonstrate considerably higher hydraulic pressures just before fluidization in tests with high RD which indicates larger resistance of dense specimens to the soil fluidization. At the time of fluidization, a significantly larger failure extent is measured in tests with high RD and finer sand specimens.
doi_str_mv 10.1007/s11440-022-01574-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761441321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761441321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-2f64a5d91221436b8322366f247041e02bacd9135cccec52e1641832bcc8fb283</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82pmks2uRyl-QcFLPYdsNtEtNalJaqm_3tQVvXmagXnel-Eh5BzYJTDWXCUAIVjFECsGdSOq7QGZQCuhAuD88HfH-picpLRkTHIUckKeFq-WWuesyTQ4Gu1K5-HD0t76NOQdDZ7mQkSb1sEnu2eS9j3NgQ4-2-j1irrVZuiHzxIM_pQcOb1K9uxnTsnz3e1i9lDNn-4fZzfzSnOBuUInha77a0AEwWXXckQupUPRMAGWYadNufLaGGNNjRakgAJ1xrSuw5ZPycXYu47hfWNTVsuw2X-TFDayyACOUCgcKRNDStE6tY7Dm447BUztxalRnCri1Lc4tS0hPoZSgf2LjX_V_6S-ACTlcGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761441321</pqid></control><display><type>article</type><title>The effect of relative density on the response of sand to internal fluidization</title><source>Springer Nature - Complete Springer Journals</source><creator>Akrami, Sepideh ; Bezuijen, Adam ; Tehrani, Faraz S. ; Terwindt, Jarno</creator><creatorcontrib>Akrami, Sepideh ; Bezuijen, Adam ; Tehrani, Faraz S. ; Terwindt, Jarno</creatorcontrib><description>Fluidization, in the geotechnical engineering context, is a failure mechanism that can occur during piping, leakage in distribution pipes or leakage through the sheet pile walls and can lead to severe consequences. This phenomenon will occur when the sand bed is subjected to an upward-facing flow. In this case, with sufficient hydraulic gradient, the effective stresses and the contact forces between soil particles will be zero, resulting in mobilization and fluidization of the soil. This paper presents small-scale laboratory tests involving two sands and relative densities (RD). The hydraulic behavior of the sand before and during the fluidization process is presented and analyzed using measurements and analytical calculations. The dimensions of the cavity and the extent of the fluidized zone are presented and investigated by performing image analysis using digital image correlation (DIC). The analysis indicates that an increase in flow rate and porosity of the sand specimen characterized the onset of soil deformation. The findings also demonstrate considerably higher hydraulic pressures just before fluidization in tests with high RD which indicates larger resistance of dense specimens to the soil fluidization. At the time of fluidization, a significantly larger failure extent is measured in tests with high RD and finer sand specimens.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-022-01574-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Contact force ; Contact stresses ; Deformation ; Digital imaging ; Dimensions ; Engineering ; Failure mechanisms ; Flow rates ; Flow velocity ; Fluidization ; Fluidizing ; Foundations ; Geoengineering ; Geotechnical engineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulic gradient ; Hydraulics ; Image analysis ; Image processing ; Laboratory tests ; Leakage ; Pipes (defects) ; Porosity ; Relative density ; Research Paper ; Sand ; Sand beds ; Sheet piles ; Soft and Granular Matter ; Soil ; Soil porosity ; Soil Science &amp; Conservation ; Soils ; Solid Mechanics ; Specific gravity ; Tests</subject><ispartof>Acta geotechnica, 2023, Vol.18 (1), p.319-333</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-2f64a5d91221436b8322366f247041e02bacd9135cccec52e1641832bcc8fb283</citedby><cites>FETCH-LOGICAL-a342t-2f64a5d91221436b8322366f247041e02bacd9135cccec52e1641832bcc8fb283</cites><orcidid>0000-0002-8765-3439 ; 0000-0002-0635-9693 ; 0000-0002-5591-0461 ; 0000-0002-9170-2010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-022-01574-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-022-01574-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Akrami, Sepideh</creatorcontrib><creatorcontrib>Bezuijen, Adam</creatorcontrib><creatorcontrib>Tehrani, Faraz S.</creatorcontrib><creatorcontrib>Terwindt, Jarno</creatorcontrib><title>The effect of relative density on the response of sand to internal fluidization</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Fluidization, in the geotechnical engineering context, is a failure mechanism that can occur during piping, leakage in distribution pipes or leakage through the sheet pile walls and can lead to severe consequences. This phenomenon will occur when the sand bed is subjected to an upward-facing flow. In this case, with sufficient hydraulic gradient, the effective stresses and the contact forces between soil particles will be zero, resulting in mobilization and fluidization of the soil. This paper presents small-scale laboratory tests involving two sands and relative densities (RD). The hydraulic behavior of the sand before and during the fluidization process is presented and analyzed using measurements and analytical calculations. The dimensions of the cavity and the extent of the fluidized zone are presented and investigated by performing image analysis using digital image correlation (DIC). The analysis indicates that an increase in flow rate and porosity of the sand specimen characterized the onset of soil deformation. The findings also demonstrate considerably higher hydraulic pressures just before fluidization in tests with high RD which indicates larger resistance of dense specimens to the soil fluidization. At the time of fluidization, a significantly larger failure extent is measured in tests with high RD and finer sand specimens.</description><subject>Complex Fluids and Microfluidics</subject><subject>Contact force</subject><subject>Contact stresses</subject><subject>Deformation</subject><subject>Digital imaging</subject><subject>Dimensions</subject><subject>Engineering</subject><subject>Failure mechanisms</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluidization</subject><subject>Fluidizing</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical engineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulic gradient</subject><subject>Hydraulics</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Laboratory tests</subject><subject>Leakage</subject><subject>Pipes (defects)</subject><subject>Porosity</subject><subject>Relative density</subject><subject>Research Paper</subject><subject>Sand</subject><subject>Sand beds</subject><subject>Sheet piles</subject><subject>Soft and Granular Matter</subject><subject>Soil</subject><subject>Soil porosity</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Solid Mechanics</subject><subject>Specific gravity</subject><subject>Tests</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82pmks2uRyl-QcFLPYdsNtEtNalJaqm_3tQVvXmagXnel-Eh5BzYJTDWXCUAIVjFECsGdSOq7QGZQCuhAuD88HfH-picpLRkTHIUckKeFq-WWuesyTQ4Gu1K5-HD0t76NOQdDZ7mQkSb1sEnu2eS9j3NgQ4-2-j1irrVZuiHzxIM_pQcOb1K9uxnTsnz3e1i9lDNn-4fZzfzSnOBuUInha77a0AEwWXXckQupUPRMAGWYadNufLaGGNNjRakgAJ1xrSuw5ZPycXYu47hfWNTVsuw2X-TFDayyACOUCgcKRNDStE6tY7Dm447BUztxalRnCri1Lc4tS0hPoZSgf2LjX_V_6S-ACTlcGs</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Akrami, Sepideh</creator><creator>Bezuijen, Adam</creator><creator>Tehrani, Faraz S.</creator><creator>Terwindt, Jarno</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8765-3439</orcidid><orcidid>https://orcid.org/0000-0002-0635-9693</orcidid><orcidid>https://orcid.org/0000-0002-5591-0461</orcidid><orcidid>https://orcid.org/0000-0002-9170-2010</orcidid></search><sort><creationdate>2023</creationdate><title>The effect of relative density on the response of sand to internal fluidization</title><author>Akrami, Sepideh ; Bezuijen, Adam ; Tehrani, Faraz S. ; Terwindt, Jarno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-2f64a5d91221436b8322366f247041e02bacd9135cccec52e1641832bcc8fb283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Contact force</topic><topic>Contact stresses</topic><topic>Deformation</topic><topic>Digital imaging</topic><topic>Dimensions</topic><topic>Engineering</topic><topic>Failure mechanisms</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluidization</topic><topic>Fluidizing</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical engineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulic gradient</topic><topic>Hydraulics</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Laboratory tests</topic><topic>Leakage</topic><topic>Pipes (defects)</topic><topic>Porosity</topic><topic>Relative density</topic><topic>Research Paper</topic><topic>Sand</topic><topic>Sand beds</topic><topic>Sheet piles</topic><topic>Soft and Granular Matter</topic><topic>Soil</topic><topic>Soil porosity</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Solid Mechanics</topic><topic>Specific gravity</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akrami, Sepideh</creatorcontrib><creatorcontrib>Bezuijen, Adam</creatorcontrib><creatorcontrib>Tehrani, Faraz S.</creatorcontrib><creatorcontrib>Terwindt, Jarno</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akrami, Sepideh</au><au>Bezuijen, Adam</au><au>Tehrani, Faraz S.</au><au>Terwindt, Jarno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of relative density on the response of sand to internal fluidization</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2023</date><risdate>2023</risdate><volume>18</volume><issue>1</issue><spage>319</spage><epage>333</epage><pages>319-333</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Fluidization, in the geotechnical engineering context, is a failure mechanism that can occur during piping, leakage in distribution pipes or leakage through the sheet pile walls and can lead to severe consequences. This phenomenon will occur when the sand bed is subjected to an upward-facing flow. In this case, with sufficient hydraulic gradient, the effective stresses and the contact forces between soil particles will be zero, resulting in mobilization and fluidization of the soil. This paper presents small-scale laboratory tests involving two sands and relative densities (RD). The hydraulic behavior of the sand before and during the fluidization process is presented and analyzed using measurements and analytical calculations. The dimensions of the cavity and the extent of the fluidized zone are presented and investigated by performing image analysis using digital image correlation (DIC). The analysis indicates that an increase in flow rate and porosity of the sand specimen characterized the onset of soil deformation. The findings also demonstrate considerably higher hydraulic pressures just before fluidization in tests with high RD which indicates larger resistance of dense specimens to the soil fluidization. At the time of fluidization, a significantly larger failure extent is measured in tests with high RD and finer sand specimens.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-022-01574-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8765-3439</orcidid><orcidid>https://orcid.org/0000-0002-0635-9693</orcidid><orcidid>https://orcid.org/0000-0002-5591-0461</orcidid><orcidid>https://orcid.org/0000-0002-9170-2010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2023, Vol.18 (1), p.319-333
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2761441321
source Springer Nature - Complete Springer Journals
subjects Complex Fluids and Microfluidics
Contact force
Contact stresses
Deformation
Digital imaging
Dimensions
Engineering
Failure mechanisms
Flow rates
Flow velocity
Fluidization
Fluidizing
Foundations
Geoengineering
Geotechnical engineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulic gradient
Hydraulics
Image analysis
Image processing
Laboratory tests
Leakage
Pipes (defects)
Porosity
Relative density
Research Paper
Sand
Sand beds
Sheet piles
Soft and Granular Matter
Soil
Soil porosity
Soil Science & Conservation
Soils
Solid Mechanics
Specific gravity
Tests
title The effect of relative density on the response of sand to internal fluidization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20relative%20density%20on%20the%20response%20of%20sand%20to%20internal%20fluidization&rft.jtitle=Acta%20geotechnica&rft.au=Akrami,%20Sepideh&rft.date=2023&rft.volume=18&rft.issue=1&rft.spage=319&rft.epage=333&rft.pages=319-333&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-022-01574-w&rft_dat=%3Cproquest_cross%3E2761441321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761441321&rft_id=info:pmid/&rfr_iscdi=true