Residual compressive stress prediction determined by cutting-edge radius and feed rate during milling of thin-walled parts

Residual compressive stress can effectively improve fatigue the life of aerospace thin-walled parts. In this study, residual compressive stress control is taken as the target. Firstly, a surface residual stress prediction model is proposed, which considers both machining parameters and milling force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023, Vol.124 (3-4), p.773-788
Hauptverfasser: Jiang, Xiaohui, Cai, Yan, Liu, Weiqiang, Guo, Miaoxian, Zhou, Hong, Xu, Zhou, Kong, Xiangjing, Ju, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 3-4
container_start_page 773
container_title International journal of advanced manufacturing technology
container_volume 124
creator Jiang, Xiaohui
Cai, Yan
Liu, Weiqiang
Guo, Miaoxian
Zhou, Hong
Xu, Zhou
Kong, Xiangjing
Ju, Pengfei
description Residual compressive stress can effectively improve fatigue the life of aerospace thin-walled parts. In this study, residual compressive stress control is taken as the target. Firstly, a surface residual stress prediction model is proposed, which considers both machining parameters and milling force heat. The model of the relationship between milling force, thermal load, and residual stress is established, which quantifies the effects of mechanical and thermal loads on the formation of residual compressive stresses. The results show that the feed rate of each tooth and the cutting-edge radius play an important role in the residual compressive stress of the milling surface. The prediction models of surface residual stress for thermal load, mechanical load, feed per tooth, and radius are established. Secondly, the ratio α of the feed rate per tooth f z to the cutting-edge radius r is quantified. When α xx  = 0.42–0.65 and α yy  = 0.36–0.7, the surface residual compressive stress in the x and y directions of the workpiece reaches the maximum value. Thus, the ratio of the feed rate per tooth f z to the cutting-edge radius r is optimized to control the mechanical and thermal load quantization. It realizes active control of residual compressive stress on the workpiece surface.
doi_str_mv 10.1007/s00170-022-10394-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761431607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761431607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2671982b40e4adb63c8f1e3a5f4f0a3783627b142702805bd3e7818d2fe69c13</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB9fwFPAczSPbZIepfiCgiB6DtnNbE3Zl0lWWz-9qSt48zQz5PefIT-ELhi9YpSq60gpU5RQzgmjYlGQ7QGasUIIIiibH6IZ5VIToaQ-RicxbjIumdQz9PUM0bvRNrjq2yFAjP4DcEz7DufZ-Sr5vsMOEoTWd-BwucPVmJLv1gTcGnCwzo8R287hGvJ7sAmwG0MGcOubZl_7Gqc335FP2zQZGWxI8Qwd1baJcP5bT9Hr3e3L8oGsnu4flzcrUgm2SAS4VGyheVlQKKwrpah0zUDYeV3U1AqlheSqZAVXlGs6L50ApZl2vAa5qJg4RZfT3iH07yPEZDb9GLp80nAlsyQmqcoUn6gq9DEGqM0QfGvDzjBq9o7N5Nhkx-bHsdnmkJhCcdh_F8Lf6n9S336CgU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761431607</pqid></control><display><type>article</type><title>Residual compressive stress prediction determined by cutting-edge radius and feed rate during milling of thin-walled parts</title><source>SpringerLink Journals</source><creator>Jiang, Xiaohui ; Cai, Yan ; Liu, Weiqiang ; Guo, Miaoxian ; Zhou, Hong ; Xu, Zhou ; Kong, Xiangjing ; Ju, Pengfei</creator><creatorcontrib>Jiang, Xiaohui ; Cai, Yan ; Liu, Weiqiang ; Guo, Miaoxian ; Zhou, Hong ; Xu, Zhou ; Kong, Xiangjing ; Ju, Pengfei</creatorcontrib><description>Residual compressive stress can effectively improve fatigue the life of aerospace thin-walled parts. In this study, residual compressive stress control is taken as the target. Firstly, a surface residual stress prediction model is proposed, which considers both machining parameters and milling force heat. The model of the relationship between milling force, thermal load, and residual stress is established, which quantifies the effects of mechanical and thermal loads on the formation of residual compressive stresses. The results show that the feed rate of each tooth and the cutting-edge radius play an important role in the residual compressive stress of the milling surface. The prediction models of surface residual stress for thermal load, mechanical load, feed per tooth, and radius are established. Secondly, the ratio α of the feed rate per tooth f z to the cutting-edge radius r is quantified. When α xx  = 0.42–0.65 and α yy  = 0.36–0.7, the surface residual compressive stress in the x and y directions of the workpiece reaches the maximum value. Thus, the ratio of the feed rate per tooth f z to the cutting-edge radius r is optimized to control the mechanical and thermal load quantization. It realizes active control of residual compressive stress on the workpiece surface.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-10394-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Active control ; CAE) and Design ; Compressive properties ; Computer-Aided Engineering (CAD ; Cutting edge radius ; Engineering ; Feed rate ; Industrial and Production Engineering ; Load ; Mechanical Engineering ; Media Management ; Milling (machining) ; Original Article ; Prediction models ; Process parameters ; Residual stress ; Teeth ; Thermal analysis ; Workpieces</subject><ispartof>International journal of advanced manufacturing technology, 2023, Vol.124 (3-4), p.773-788</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2671982b40e4adb63c8f1e3a5f4f0a3783627b142702805bd3e7818d2fe69c13</citedby><cites>FETCH-LOGICAL-c319t-e2671982b40e4adb63c8f1e3a5f4f0a3783627b142702805bd3e7818d2fe69c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-10394-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-10394-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiang, Xiaohui</creatorcontrib><creatorcontrib>Cai, Yan</creatorcontrib><creatorcontrib>Liu, Weiqiang</creatorcontrib><creatorcontrib>Guo, Miaoxian</creatorcontrib><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Xu, Zhou</creatorcontrib><creatorcontrib>Kong, Xiangjing</creatorcontrib><creatorcontrib>Ju, Pengfei</creatorcontrib><title>Residual compressive stress prediction determined by cutting-edge radius and feed rate during milling of thin-walled parts</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Residual compressive stress can effectively improve fatigue the life of aerospace thin-walled parts. In this study, residual compressive stress control is taken as the target. Firstly, a surface residual stress prediction model is proposed, which considers both machining parameters and milling force heat. The model of the relationship between milling force, thermal load, and residual stress is established, which quantifies the effects of mechanical and thermal loads on the formation of residual compressive stresses. The results show that the feed rate of each tooth and the cutting-edge radius play an important role in the residual compressive stress of the milling surface. The prediction models of surface residual stress for thermal load, mechanical load, feed per tooth, and radius are established. Secondly, the ratio α of the feed rate per tooth f z to the cutting-edge radius r is quantified. When α xx  = 0.42–0.65 and α yy  = 0.36–0.7, the surface residual compressive stress in the x and y directions of the workpiece reaches the maximum value. Thus, the ratio of the feed rate per tooth f z to the cutting-edge radius r is optimized to control the mechanical and thermal load quantization. It realizes active control of residual compressive stress on the workpiece surface.</description><subject>Active control</subject><subject>CAE) and Design</subject><subject>Compressive properties</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cutting edge radius</subject><subject>Engineering</subject><subject>Feed rate</subject><subject>Industrial and Production Engineering</subject><subject>Load</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Milling (machining)</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Process parameters</subject><subject>Residual stress</subject><subject>Teeth</subject><subject>Thermal analysis</subject><subject>Workpieces</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEQx4MoWB9fwFPAczSPbZIepfiCgiB6DtnNbE3Zl0lWWz-9qSt48zQz5PefIT-ELhi9YpSq60gpU5RQzgmjYlGQ7QGasUIIIiibH6IZ5VIToaQ-RicxbjIumdQz9PUM0bvRNrjq2yFAjP4DcEz7DufZ-Sr5vsMOEoTWd-BwucPVmJLv1gTcGnCwzo8R287hGvJ7sAmwG0MGcOubZl_7Gqc335FP2zQZGWxI8Qwd1baJcP5bT9Hr3e3L8oGsnu4flzcrUgm2SAS4VGyheVlQKKwrpah0zUDYeV3U1AqlheSqZAVXlGs6L50ApZl2vAa5qJg4RZfT3iH07yPEZDb9GLp80nAlsyQmqcoUn6gq9DEGqM0QfGvDzjBq9o7N5Nhkx-bHsdnmkJhCcdh_F8Lf6n9S336CgU4</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Jiang, Xiaohui</creator><creator>Cai, Yan</creator><creator>Liu, Weiqiang</creator><creator>Guo, Miaoxian</creator><creator>Zhou, Hong</creator><creator>Xu, Zhou</creator><creator>Kong, Xiangjing</creator><creator>Ju, Pengfei</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2023</creationdate><title>Residual compressive stress prediction determined by cutting-edge radius and feed rate during milling of thin-walled parts</title><author>Jiang, Xiaohui ; Cai, Yan ; Liu, Weiqiang ; Guo, Miaoxian ; Zhou, Hong ; Xu, Zhou ; Kong, Xiangjing ; Ju, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2671982b40e4adb63c8f1e3a5f4f0a3783627b142702805bd3e7818d2fe69c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>CAE) and Design</topic><topic>Compressive properties</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cutting edge radius</topic><topic>Engineering</topic><topic>Feed rate</topic><topic>Industrial and Production Engineering</topic><topic>Load</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Milling (machining)</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Process parameters</topic><topic>Residual stress</topic><topic>Teeth</topic><topic>Thermal analysis</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiaohui</creatorcontrib><creatorcontrib>Cai, Yan</creatorcontrib><creatorcontrib>Liu, Weiqiang</creatorcontrib><creatorcontrib>Guo, Miaoxian</creatorcontrib><creatorcontrib>Zhou, Hong</creatorcontrib><creatorcontrib>Xu, Zhou</creatorcontrib><creatorcontrib>Kong, Xiangjing</creatorcontrib><creatorcontrib>Ju, Pengfei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiaohui</au><au>Cai, Yan</au><au>Liu, Weiqiang</au><au>Guo, Miaoxian</au><au>Zhou, Hong</au><au>Xu, Zhou</au><au>Kong, Xiangjing</au><au>Ju, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual compressive stress prediction determined by cutting-edge radius and feed rate during milling of thin-walled parts</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023</date><risdate>2023</risdate><volume>124</volume><issue>3-4</issue><spage>773</spage><epage>788</epage><pages>773-788</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Residual compressive stress can effectively improve fatigue the life of aerospace thin-walled parts. In this study, residual compressive stress control is taken as the target. Firstly, a surface residual stress prediction model is proposed, which considers both machining parameters and milling force heat. The model of the relationship between milling force, thermal load, and residual stress is established, which quantifies the effects of mechanical and thermal loads on the formation of residual compressive stresses. The results show that the feed rate of each tooth and the cutting-edge radius play an important role in the residual compressive stress of the milling surface. The prediction models of surface residual stress for thermal load, mechanical load, feed per tooth, and radius are established. Secondly, the ratio α of the feed rate per tooth f z to the cutting-edge radius r is quantified. When α xx  = 0.42–0.65 and α yy  = 0.36–0.7, the surface residual compressive stress in the x and y directions of the workpiece reaches the maximum value. Thus, the ratio of the feed rate per tooth f z to the cutting-edge radius r is optimized to control the mechanical and thermal load quantization. It realizes active control of residual compressive stress on the workpiece surface.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-10394-x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023, Vol.124 (3-4), p.773-788
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2761431607
source SpringerLink Journals
subjects Active control
CAE) and Design
Compressive properties
Computer-Aided Engineering (CAD
Cutting edge radius
Engineering
Feed rate
Industrial and Production Engineering
Load
Mechanical Engineering
Media Management
Milling (machining)
Original Article
Prediction models
Process parameters
Residual stress
Teeth
Thermal analysis
Workpieces
title Residual compressive stress prediction determined by cutting-edge radius and feed rate during milling of thin-walled parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20compressive%20stress%20prediction%20determined%20by%20cutting-edge%20radius%20and%20feed%20rate%20during%20milling%20of%20thin-walled%20parts&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jiang,%20Xiaohui&rft.date=2023&rft.volume=124&rft.issue=3-4&rft.spage=773&rft.epage=788&rft.pages=773-788&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-10394-x&rft_dat=%3Cproquest_cross%3E2761431607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761431607&rft_id=info:pmid/&rfr_iscdi=true