Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach

In a recent paper of Mitsopoulos and Tsamparlis [J. Geom. Phys. 170, 104383 (2021)], a general theorem is given, which provides an algorithmic method for the computation of first integrals (FIs) of autonomous dynamical systems in terms of the symmetries of the kinetic metric defined by the dynamical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-01, Vol.64 (1)
Hauptverfasser: Mitsopoulos, Antonios, Tsamparlis, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator Mitsopoulos, Antonios
Tsamparlis, Michael
description In a recent paper of Mitsopoulos and Tsamparlis [J. Geom. Phys. 170, 104383 (2021)], a general theorem is given, which provides an algorithmic method for the computation of first integrals (FIs) of autonomous dynamical systems in terms of the symmetries of the kinetic metric defined by the dynamical equations of the system. In the present work, we apply this theorem to compute the cubic FIs of autonomous conservative Newtonian dynamical systems with two degrees of freedom. We show that the known results on this topic, which have been obtained by means of various divertive methods, and the additional ones derived in this work can be obtained by the single algorithmic method provided by this theorem. The results are collected in Tables I–IV, which can be used as an updated reference for these types of integrable and superintegrable potentials. The results we find are for special values of free parameters; therefore, using the methods developed here, other researchers by a different suitable choice of the parameters will be able to find new integrable and superintegrable potentials.
doi_str_mv 10.1063/5.0097329
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2761395031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761395031</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-26f75a42b1474322c18401148a4185b3f317ab9f50835eb501193af647ede7e3</originalsourceid><addsrcrecordid>eNp9kM1LwzAAxYMoWKcH_4OAN6Ezn016lDI_YOBleA1pl2wZa1OTVOh_b2QDb57e4f147_EAuMdoiVFFn_gSoVpQUl-AAiNZl6Li8hIUCBFSEiblNbiJ8YAQxpKxAnw2U-s6aF2ICbohmV3Qxwi9hXpKfvC9nyLczoPuXaePMM4xmT5mEq4IbGeoB6iPOx9c2mcC6nEMXnf7W3Blc465O-sCbF5Wm-atXH-8vjfP63LEkqaSVFZwzUiLmWCUkC6PysuY1AxL3lJLsdBtbTmSlJuWZ6-m2lZMmK0Rhi7Awyk2t35NJiZ18FMYcqMiosK05ojiTD2eqNi5pJPzgxqD63WYFUbq9zbF1fm2_-BvH_5ANW4t_QHAtGzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761395031</pqid></control><display><type>article</type><title>Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mitsopoulos, Antonios ; Tsamparlis, Michael</creator><creatorcontrib>Mitsopoulos, Antonios ; Tsamparlis, Michael</creatorcontrib><description>In a recent paper of Mitsopoulos and Tsamparlis [J. Geom. Phys. 170, 104383 (2021)], a general theorem is given, which provides an algorithmic method for the computation of first integrals (FIs) of autonomous dynamical systems in terms of the symmetries of the kinetic metric defined by the dynamical equations of the system. In the present work, we apply this theorem to compute the cubic FIs of autonomous conservative Newtonian dynamical systems with two degrees of freedom. We show that the known results on this topic, which have been obtained by means of various divertive methods, and the additional ones derived in this work can be obtained by the single algorithmic method provided by this theorem. The results are collected in Tables I–IV, which can be used as an updated reference for these types of integrable and superintegrable potentials. The results we find are for special values of free parameters; therefore, using the methods developed here, other researchers by a different suitable choice of the parameters will be able to find new integrable and superintegrable potentials.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0097329</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algorithms ; Dynamical systems ; Integrals ; Parameters ; Physics ; Theorems</subject><ispartof>Journal of mathematical physics, 2023-01, Vol.64 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5389-6264 ; 0000-0001-7447-0046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0097329$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Mitsopoulos, Antonios</creatorcontrib><creatorcontrib>Tsamparlis, Michael</creatorcontrib><title>Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach</title><title>Journal of mathematical physics</title><description>In a recent paper of Mitsopoulos and Tsamparlis [J. Geom. Phys. 170, 104383 (2021)], a general theorem is given, which provides an algorithmic method for the computation of first integrals (FIs) of autonomous dynamical systems in terms of the symmetries of the kinetic metric defined by the dynamical equations of the system. In the present work, we apply this theorem to compute the cubic FIs of autonomous conservative Newtonian dynamical systems with two degrees of freedom. We show that the known results on this topic, which have been obtained by means of various divertive methods, and the additional ones derived in this work can be obtained by the single algorithmic method provided by this theorem. The results are collected in Tables I–IV, which can be used as an updated reference for these types of integrable and superintegrable potentials. The results we find are for special values of free parameters; therefore, using the methods developed here, other researchers by a different suitable choice of the parameters will be able to find new integrable and superintegrable potentials.</description><subject>Algorithms</subject><subject>Dynamical systems</subject><subject>Integrals</subject><subject>Parameters</subject><subject>Physics</subject><subject>Theorems</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAAxYMoWKcH_4OAN6Ezn016lDI_YOBleA1pl2wZa1OTVOh_b2QDb57e4f147_EAuMdoiVFFn_gSoVpQUl-AAiNZl6Li8hIUCBFSEiblNbiJ8YAQxpKxAnw2U-s6aF2ICbohmV3Qxwi9hXpKfvC9nyLczoPuXaePMM4xmT5mEq4IbGeoB6iPOx9c2mcC6nEMXnf7W3Blc465O-sCbF5Wm-atXH-8vjfP63LEkqaSVFZwzUiLmWCUkC6PysuY1AxL3lJLsdBtbTmSlJuWZ6-m2lZMmK0Rhi7Awyk2t35NJiZ18FMYcqMiosK05ojiTD2eqNi5pJPzgxqD63WYFUbq9zbF1fm2_-BvH_5ANW4t_QHAtGzQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mitsopoulos, Antonios</creator><creator>Tsamparlis, Michael</creator><general>American Institute of Physics</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5389-6264</orcidid><orcidid>https://orcid.org/0000-0001-7447-0046</orcidid></search><sort><creationdate>20230101</creationdate><title>Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach</title><author>Mitsopoulos, Antonios ; Tsamparlis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-26f75a42b1474322c18401148a4185b3f317ab9f50835eb501193af647ede7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Dynamical systems</topic><topic>Integrals</topic><topic>Parameters</topic><topic>Physics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitsopoulos, Antonios</creatorcontrib><creatorcontrib>Tsamparlis, Michael</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitsopoulos, Antonios</au><au>Tsamparlis, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In a recent paper of Mitsopoulos and Tsamparlis [J. Geom. Phys. 170, 104383 (2021)], a general theorem is given, which provides an algorithmic method for the computation of first integrals (FIs) of autonomous dynamical systems in terms of the symmetries of the kinetic metric defined by the dynamical equations of the system. In the present work, we apply this theorem to compute the cubic FIs of autonomous conservative Newtonian dynamical systems with two degrees of freedom. We show that the known results on this topic, which have been obtained by means of various divertive methods, and the additional ones derived in this work can be obtained by the single algorithmic method provided by this theorem. The results are collected in Tables I–IV, which can be used as an updated reference for these types of integrable and superintegrable potentials. The results we find are for special values of free parameters; therefore, using the methods developed here, other researchers by a different suitable choice of the parameters will be able to find new integrable and superintegrable potentials.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0097329</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0002-5389-6264</orcidid><orcidid>https://orcid.org/0000-0001-7447-0046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-01, Vol.64 (1)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2761395031
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Dynamical systems
Integrals
Parameters
Physics
Theorems
title Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic%20first%20integrals%20of%20autonomous%20dynamical%20systems%20in%20E2%20by%20an%20algorithmic%20approach&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Mitsopoulos,%20Antonios&rft.date=2023-01-01&rft.volume=64&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0097329&rft_dat=%3Cproquest_scita%3E2761395031%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761395031&rft_id=info:pmid/&rfr_iscdi=true