Channel Bi-Diagonalization for MIMO Communications

This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2023-01, Vol.12 (1), p.163-167
Hauptverfasser: Yang, Jie, Hu, Wanchen, Jiang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 163
container_title IEEE wireless communications letters
container_volume 12
creator Yang, Jie
Hu, Wanchen
Jiang, Yi
description This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.
doi_str_mv 10.1109/LWC.2022.3219822
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2761371473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9940474</ieee_id><sourcerecordid>2761371473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-a01f0123661de7578d8551fabd7f1bbe9a1606171f6a2fcb0c89f3674bec58a43</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEtPYHYlLJc4dsZMm7RHK16ROu4A4RmmXQKatGUl7gL-ejk7zxZb1np_1I-Qa6ByAFnfVRzlHijhnCEWOeEYmCAJTZDw7P81MXpJZjBs6lKCAkE8Ill-6bc02eXDpo9OfvtVb96s759vE-pAsF8tVUvrdrm9d87-OV-TC6m00s2Ofkvfnp7fyNa1WL4vyvkobkLxLNQU7hDAhYG1kJvN1nmVgdb2WFuraFBoEFSDBCo22qWmTF5YJyWvTZLnmbEpux7v74L97Ezu18X0Y_osKpQAmgUs2qOioaoKPMRir9sHtdPhRQNUBjhrgqAMcdYQzWG5GizPGnORFwSmXnP0BnD5d8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761371473</pqid></control><display><type>article</type><title>Channel Bi-Diagonalization for MIMO Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Jie ; Hu, Wanchen ; Jiang, Yi</creator><creatorcontrib>Yang, Jie ; Hu, Wanchen ; Jiang, Yi</creatorcontrib><description>This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3219822</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; BCJR algorithm ; Massive MIMO ; Matrix decomposition ; Maximum likelihood decoding ; MIMO communication ; MIMO transceiver design ; Receivers ; Transceivers ; Transmitters ; Viterbi algorithm ; Viterbi algorithm detectors</subject><ispartof>IEEE wireless communications letters, 2023-01, Vol.12 (1), p.163-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-a01f0123661de7578d8551fabd7f1bbe9a1606171f6a2fcb0c89f3674bec58a43</cites><orcidid>0000-0002-6490-0345 ; 0000-0002-6618-5437 ; 0000-0001-5446-8483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9940474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9940474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Hu, Wanchen</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><title>Channel Bi-Diagonalization for MIMO Communications</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.</description><subject>Algorithms</subject><subject>BCJR algorithm</subject><subject>Massive MIMO</subject><subject>Matrix decomposition</subject><subject>Maximum likelihood decoding</subject><subject>MIMO communication</subject><subject>MIMO transceiver design</subject><subject>Receivers</subject><subject>Transceivers</subject><subject>Transmitters</subject><subject>Viterbi algorithm</subject><subject>Viterbi algorithm detectors</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PwzAMxSMEEtPYHYlLJc4dsZMm7RHK16ROu4A4RmmXQKatGUl7gL-ejk7zxZb1np_1I-Qa6ByAFnfVRzlHijhnCEWOeEYmCAJTZDw7P81MXpJZjBs6lKCAkE8Ill-6bc02eXDpo9OfvtVb96s759vE-pAsF8tVUvrdrm9d87-OV-TC6m00s2Ofkvfnp7fyNa1WL4vyvkobkLxLNQU7hDAhYG1kJvN1nmVgdb2WFuraFBoEFSDBCo22qWmTF5YJyWvTZLnmbEpux7v74L97Ezu18X0Y_osKpQAmgUs2qOioaoKPMRir9sHtdPhRQNUBjhrgqAMcdYQzWG5GizPGnORFwSmXnP0BnD5d8Q</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Yang, Jie</creator><creator>Hu, Wanchen</creator><creator>Jiang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6490-0345</orcidid><orcidid>https://orcid.org/0000-0002-6618-5437</orcidid><orcidid>https://orcid.org/0000-0001-5446-8483</orcidid></search><sort><creationdate>202301</creationdate><title>Channel Bi-Diagonalization for MIMO Communications</title><author>Yang, Jie ; Hu, Wanchen ; Jiang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-a01f0123661de7578d8551fabd7f1bbe9a1606171f6a2fcb0c89f3674bec58a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>BCJR algorithm</topic><topic>Massive MIMO</topic><topic>Matrix decomposition</topic><topic>Maximum likelihood decoding</topic><topic>MIMO communication</topic><topic>MIMO transceiver design</topic><topic>Receivers</topic><topic>Transceivers</topic><topic>Transmitters</topic><topic>Viterbi algorithm</topic><topic>Viterbi algorithm detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Hu, Wanchen</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Jie</au><au>Hu, Wanchen</au><au>Jiang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Bi-Diagonalization for MIMO Communications</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2023-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>163</spage><epage>167</epage><pages>163-167</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3219822</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6490-0345</orcidid><orcidid>https://orcid.org/0000-0002-6618-5437</orcidid><orcidid>https://orcid.org/0000-0001-5446-8483</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2023-01, Vol.12 (1), p.163-167
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_2761371473
source IEEE Electronic Library (IEL)
subjects Algorithms
BCJR algorithm
Massive MIMO
Matrix decomposition
Maximum likelihood decoding
MIMO communication
MIMO transceiver design
Receivers
Transceivers
Transmitters
Viterbi algorithm
Viterbi algorithm detectors
title Channel Bi-Diagonalization for MIMO Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Bi-Diagonalization%20for%20MIMO%20Communications&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Yang,%20Jie&rft.date=2023-01&rft.volume=12&rft.issue=1&rft.spage=163&rft.epage=167&rft.pages=163-167&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3219822&rft_dat=%3Cproquest_RIE%3E2761371473%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761371473&rft_id=info:pmid/&rft_ieee_id=9940474&rfr_iscdi=true