Channel Bi-Diagonalization for MIMO Communications
This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum li...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications letters 2023-01, Vol.12 (1), p.163-167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | IEEE wireless communications letters |
container_volume | 12 |
creator | Yang, Jie Hu, Wanchen Jiang, Yi |
description | This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme. |
doi_str_mv | 10.1109/LWC.2022.3219822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2761371473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9940474</ieee_id><sourcerecordid>2761371473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-a01f0123661de7578d8551fabd7f1bbe9a1606171f6a2fcb0c89f3674bec58a43</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEtPYHYlLJc4dsZMm7RHK16ROu4A4RmmXQKatGUl7gL-ejk7zxZb1np_1I-Qa6ByAFnfVRzlHijhnCEWOeEYmCAJTZDw7P81MXpJZjBs6lKCAkE8Ill-6bc02eXDpo9OfvtVb96s759vE-pAsF8tVUvrdrm9d87-OV-TC6m00s2Ofkvfnp7fyNa1WL4vyvkobkLxLNQU7hDAhYG1kJvN1nmVgdb2WFuraFBoEFSDBCo22qWmTF5YJyWvTZLnmbEpux7v74L97Ezu18X0Y_osKpQAmgUs2qOioaoKPMRir9sHtdPhRQNUBjhrgqAMcdYQzWG5GizPGnORFwSmXnP0BnD5d8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761371473</pqid></control><display><type>article</type><title>Channel Bi-Diagonalization for MIMO Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Jie ; Hu, Wanchen ; Jiang, Yi</creator><creatorcontrib>Yang, Jie ; Hu, Wanchen ; Jiang, Yi</creatorcontrib><description>This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2022.3219822</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; BCJR algorithm ; Massive MIMO ; Matrix decomposition ; Maximum likelihood decoding ; MIMO communication ; MIMO transceiver design ; Receivers ; Transceivers ; Transmitters ; Viterbi algorithm ; Viterbi algorithm detectors</subject><ispartof>IEEE wireless communications letters, 2023-01, Vol.12 (1), p.163-167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-a01f0123661de7578d8551fabd7f1bbe9a1606171f6a2fcb0c89f3674bec58a43</cites><orcidid>0000-0002-6490-0345 ; 0000-0002-6618-5437 ; 0000-0001-5446-8483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9940474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9940474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Hu, Wanchen</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><title>Channel Bi-Diagonalization for MIMO Communications</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.</description><subject>Algorithms</subject><subject>BCJR algorithm</subject><subject>Massive MIMO</subject><subject>Matrix decomposition</subject><subject>Maximum likelihood decoding</subject><subject>MIMO communication</subject><subject>MIMO transceiver design</subject><subject>Receivers</subject><subject>Transceivers</subject><subject>Transmitters</subject><subject>Viterbi algorithm</subject><subject>Viterbi algorithm detectors</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PwzAMxSMEEtPYHYlLJc4dsZMm7RHK16ROu4A4RmmXQKatGUl7gL-ejk7zxZb1np_1I-Qa6ByAFnfVRzlHijhnCEWOeEYmCAJTZDw7P81MXpJZjBs6lKCAkE8Ill-6bc02eXDpo9OfvtVb96s759vE-pAsF8tVUvrdrm9d87-OV-TC6m00s2Ofkvfnp7fyNa1WL4vyvkobkLxLNQU7hDAhYG1kJvN1nmVgdb2WFuraFBoEFSDBCo22qWmTF5YJyWvTZLnmbEpux7v74L97Ezu18X0Y_osKpQAmgUs2qOioaoKPMRir9sHtdPhRQNUBjhrgqAMcdYQzWG5GizPGnORFwSmXnP0BnD5d8Q</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Yang, Jie</creator><creator>Hu, Wanchen</creator><creator>Jiang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6490-0345</orcidid><orcidid>https://orcid.org/0000-0002-6618-5437</orcidid><orcidid>https://orcid.org/0000-0001-5446-8483</orcidid></search><sort><creationdate>202301</creationdate><title>Channel Bi-Diagonalization for MIMO Communications</title><author>Yang, Jie ; Hu, Wanchen ; Jiang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-a01f0123661de7578d8551fabd7f1bbe9a1606171f6a2fcb0c89f3674bec58a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>BCJR algorithm</topic><topic>Massive MIMO</topic><topic>Matrix decomposition</topic><topic>Maximum likelihood decoding</topic><topic>MIMO communication</topic><topic>MIMO transceiver design</topic><topic>Receivers</topic><topic>Transceivers</topic><topic>Transmitters</topic><topic>Viterbi algorithm</topic><topic>Viterbi algorithm detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Hu, Wanchen</creatorcontrib><creatorcontrib>Jiang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Jie</au><au>Hu, Wanchen</au><au>Jiang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel Bi-Diagonalization for MIMO Communications</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2023-01</date><risdate>2023</risdate><volume>12</volume><issue>1</issue><spage>163</spage><epage>167</epage><pages>163-167</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>This letter proposes a multi-input multi-output (MIMO) transceiver design termed channel bi-diagonalization (CBD), whose precoder and equalizer bi-diagonalize the channel matrix. By representing the bidiagonal MIMO channel with a trellis diagram, we can apply the Viterbi algorithm for the maximum likelihood (ML) detection and decoding, or the BCJR algorithm for the maximum a posteriori (MAP) detection and decoding, which drastically simplifies the optimal MIMO communications. Simulation results verify the superior performance of the proposed CBD scheme.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2022.3219822</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6490-0345</orcidid><orcidid>https://orcid.org/0000-0002-6618-5437</orcidid><orcidid>https://orcid.org/0000-0001-5446-8483</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-2337 |
ispartof | IEEE wireless communications letters, 2023-01, Vol.12 (1), p.163-167 |
issn | 2162-2337 2162-2345 |
language | eng |
recordid | cdi_proquest_journals_2761371473 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms BCJR algorithm Massive MIMO Matrix decomposition Maximum likelihood decoding MIMO communication MIMO transceiver design Receivers Transceivers Transmitters Viterbi algorithm Viterbi algorithm detectors |
title | Channel Bi-Diagonalization for MIMO Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20Bi-Diagonalization%20for%20MIMO%20Communications&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Yang,%20Jie&rft.date=2023-01&rft.volume=12&rft.issue=1&rft.spage=163&rft.epage=167&rft.pages=163-167&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2022.3219822&rft_dat=%3Cproquest_RIE%3E2761371473%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761371473&rft_id=info:pmid/&rft_ieee_id=9940474&rfr_iscdi=true |