Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface

Controlling the lithium growth morphology in lithium reservoir‐free cells (RFCs), so‐called “anode‐free” solid‐state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-01, Vol.13 (1), p.n/a
Hauptverfasser: Fuchs, Till, Becker, Juri, Haslam, Catherine G., Lerch, Christian, Sakamoto, Jeff, Richter, Felix H., Janek, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced energy materials
container_volume 13
creator Fuchs, Till
Becker, Juri
Haslam, Catherine G.
Lerch, Christian
Sakamoto, Jeff
Richter, Felix H.
Janek, Jürgen
description Controlling the lithium growth morphology in lithium reservoir‐free cells (RFCs), so‐called “anode‐free” solid‐state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film‐like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating. This work demonstrates a novel operando scanning electron microscopy (SEM) technique to visualize the lithium growth at the Cu|LLZO interface within so‐called “anode‐free” cell designs. Detailed SEM and image analysis shows a clear dependence of the growth morphology on applied current density and current collector thickness.
doi_str_mv 10.1002/aenm.202203174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2761193415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761193415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-8672e5d782530781775a122681c025047cc64cbca168fbd9cfaa10ab60ed23323</originalsourceid><addsrcrecordid>eNqFUE1PwkAU3BhNJMjV8yaei_vRdtsjVkCSIgf04mWzbF9DSWlxuw0h8cBP8Afon-OXuASDR99lZl5m3ksGoVtK-pQQdq-gWvcZYYxwKvwL1KEh9b0w8snlmXN2jXpNsyJu_JgSzjuoTVpjoLKH_ecjbKDKHMdpYZdFu8ZTsKrEY1Nv7RJP6wwaXFT4sP8aVE64yMiAg288r8sic3pulQX8oKwFUzi3stguASftR5q-zfCkcvtcabhBV7kqG-j9Yhe9joYvyZOXzsaTZJB6mgfC96JQMAgyEbGAExFRIQJFGQsjqgkLiC-0Dn290IqGUb7IYp0rRYlahAQyxjnjXXR3ursx9XsLjZWrujWVeymZCCmNuU8D5-qfXNrUTWMglxtTrJXZSUrksV15bFee23WB-BTYFiXs_nHLwfB5-pf9AdaigfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761193415</pqid></control><display><type>article</type><title>Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fuchs, Till ; Becker, Juri ; Haslam, Catherine G. ; Lerch, Christian ; Sakamoto, Jeff ; Richter, Felix H. ; Janek, Jürgen</creator><creatorcontrib>Fuchs, Till ; Becker, Juri ; Haslam, Catherine G. ; Lerch, Christian ; Sakamoto, Jeff ; Richter, Felix H. ; Janek, Jürgen</creatorcontrib><description>Controlling the lithium growth morphology in lithium reservoir‐free cells (RFCs), so‐called “anode‐free” solid‐state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film‐like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating. This work demonstrates a novel operando scanning electron microscopy (SEM) technique to visualize the lithium growth at the Cu|LLZO interface within so‐called “anode‐free” cell designs. Detailed SEM and image analysis shows a clear dependence of the growth morphology on applied current density and current collector thickness.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202203174</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anode‐free‐cell ; Charging ; Current density ; Electrolytic cells ; Interfaces ; kinetics ; Lithium ; Lithium batteries ; Li‐metal ; Morphology ; operando SEM ; Particle density (concentration) ; Plating ; Reservoirs ; Solid electrolytes</subject><ispartof>Advanced energy materials, 2023-01, Vol.13 (1), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-8672e5d782530781775a122681c025047cc64cbca168fbd9cfaa10ab60ed23323</citedby><cites>FETCH-LOGICAL-c3574-8672e5d782530781775a122681c025047cc64cbca168fbd9cfaa10ab60ed23323</cites><orcidid>0000-0002-9221-4756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202203174$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202203174$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fuchs, Till</creatorcontrib><creatorcontrib>Becker, Juri</creatorcontrib><creatorcontrib>Haslam, Catherine G.</creatorcontrib><creatorcontrib>Lerch, Christian</creatorcontrib><creatorcontrib>Sakamoto, Jeff</creatorcontrib><creatorcontrib>Richter, Felix H.</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface</title><title>Advanced energy materials</title><description>Controlling the lithium growth morphology in lithium reservoir‐free cells (RFCs), so‐called “anode‐free” solid‐state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film‐like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating. This work demonstrates a novel operando scanning electron microscopy (SEM) technique to visualize the lithium growth at the Cu|LLZO interface within so‐called “anode‐free” cell designs. Detailed SEM and image analysis shows a clear dependence of the growth morphology on applied current density and current collector thickness.</description><subject>anode‐free‐cell</subject><subject>Charging</subject><subject>Current density</subject><subject>Electrolytic cells</subject><subject>Interfaces</subject><subject>kinetics</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Li‐metal</subject><subject>Morphology</subject><subject>operando SEM</subject><subject>Particle density (concentration)</subject><subject>Plating</subject><subject>Reservoirs</subject><subject>Solid electrolytes</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUE1PwkAU3BhNJMjV8yaei_vRdtsjVkCSIgf04mWzbF9DSWlxuw0h8cBP8Afon-OXuASDR99lZl5m3ksGoVtK-pQQdq-gWvcZYYxwKvwL1KEh9b0w8snlmXN2jXpNsyJu_JgSzjuoTVpjoLKH_ecjbKDKHMdpYZdFu8ZTsKrEY1Nv7RJP6wwaXFT4sP8aVE64yMiAg288r8sic3pulQX8oKwFUzi3stguASftR5q-zfCkcvtcabhBV7kqG-j9Yhe9joYvyZOXzsaTZJB6mgfC96JQMAgyEbGAExFRIQJFGQsjqgkLiC-0Dn290IqGUb7IYp0rRYlahAQyxjnjXXR3ursx9XsLjZWrujWVeymZCCmNuU8D5-qfXNrUTWMglxtTrJXZSUrksV15bFee23WB-BTYFiXs_nHLwfB5-pf9AdaigfE</recordid><startdate>20230106</startdate><enddate>20230106</enddate><creator>Fuchs, Till</creator><creator>Becker, Juri</creator><creator>Haslam, Catherine G.</creator><creator>Lerch, Christian</creator><creator>Sakamoto, Jeff</creator><creator>Richter, Felix H.</creator><creator>Janek, Jürgen</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9221-4756</orcidid></search><sort><creationdate>20230106</creationdate><title>Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface</title><author>Fuchs, Till ; Becker, Juri ; Haslam, Catherine G. ; Lerch, Christian ; Sakamoto, Jeff ; Richter, Felix H. ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-8672e5d782530781775a122681c025047cc64cbca168fbd9cfaa10ab60ed23323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>anode‐free‐cell</topic><topic>Charging</topic><topic>Current density</topic><topic>Electrolytic cells</topic><topic>Interfaces</topic><topic>kinetics</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Li‐metal</topic><topic>Morphology</topic><topic>operando SEM</topic><topic>Particle density (concentration)</topic><topic>Plating</topic><topic>Reservoirs</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Till</creatorcontrib><creatorcontrib>Becker, Juri</creatorcontrib><creatorcontrib>Haslam, Catherine G.</creatorcontrib><creatorcontrib>Lerch, Christian</creatorcontrib><creatorcontrib>Sakamoto, Jeff</creatorcontrib><creatorcontrib>Richter, Felix H.</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Till</au><au>Becker, Juri</au><au>Haslam, Catherine G.</au><au>Lerch, Christian</au><au>Sakamoto, Jeff</au><au>Richter, Felix H.</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface</atitle><jtitle>Advanced energy materials</jtitle><date>2023-01-06</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Controlling the lithium growth morphology in lithium reservoir‐free cells (RFCs), so‐called “anode‐free” solid‐state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film‐like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating. This work demonstrates a novel operando scanning electron microscopy (SEM) technique to visualize the lithium growth at the Cu|LLZO interface within so‐called “anode‐free” cell designs. Detailed SEM and image analysis shows a clear dependence of the growth morphology on applied current density and current collector thickness.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202203174</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9221-4756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-01, Vol.13 (1), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2761193415
source Wiley Online Library Journals Frontfile Complete
subjects anode‐free‐cell
Charging
Current density
Electrolytic cells
Interfaces
kinetics
Lithium
Lithium batteries
Li‐metal
Morphology
operando SEM
Particle density (concentration)
Plating
Reservoirs
Solid electrolytes
title Current‐Dependent Lithium Metal Growth Modes in “Anode‐Free” Solid‐State Batteries at the Cu|LLZO Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%E2%80%90Dependent%20Lithium%20Metal%20Growth%20Modes%20in%20%E2%80%9CAnode%E2%80%90Free%E2%80%9D%20Solid%E2%80%90State%20Batteries%20at%20the%20Cu%7CLLZO%20Interface&rft.jtitle=Advanced%20energy%20materials&rft.au=Fuchs,%20Till&rft.date=2023-01-06&rft.volume=13&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202203174&rft_dat=%3Cproquest_cross%3E2761193415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761193415&rft_id=info:pmid/&rfr_iscdi=true