Lithium Difluoro(Oxalate)Borate‐Induced Interphase for High‐Voltage LiFe0.15Co0.85PO4@C Cathode by Solid‐State Synthesis

Herein, the effect of lithium difluoro(oxalate)borate (LiDFOB) as an electrolyte additive on the electrochemical performance of LiFe0.15Co0.85PO4@C (LFCP@C) cathode, synthesized by a scalable solid‐state synthesis method is reported. Galvanostatic studies revealed better electrochemical performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2023-01, Vol.11 (1), p.n/a
Hauptverfasser: Sreedeep, Sreekumar, Natarajan, Subramanian, Lee, Yun-Sung, Aravindan, Vanchiappan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 11
creator Sreedeep, Sreekumar
Natarajan, Subramanian
Lee, Yun-Sung
Aravindan, Vanchiappan
description Herein, the effect of lithium difluoro(oxalate)borate (LiDFOB) as an electrolyte additive on the electrochemical performance of LiFe0.15Co0.85PO4@C (LFCP@C) cathode, synthesized by a scalable solid‐state synthesis method is reported. Galvanostatic studies revealed better electrochemical performance among the LFCP@C (LiDFOB: 0.5–2 wt%) in a half‐cell assembly compared to the LiFe0.15Co0.85PO4 in the absence of LiDFOB. Also, among the various concentrations of LiDFOB, the LFCP@C (LiDFOB—1.5 wt%) and LFCP@C (LiDFOB—2 wt%) are optimized as suitable candidates for further electrochemical studies owing to the high discharge capacities of 116 and 118 mAh g−1. In addition, the electrochemical impedance studies (EIS) exhibited an increase in the charge–transfer resistance (R ct) as the amount of LiDFOB was increased, whereas a lower R ct value is observed in the absence of additive. In addition, the diffusion coefficient calculation is calculated using the EIS data, which shows a diffusion coefficient in the order of ≈10−13 cm2 s−1. However, as the amount of LiDFOB is increased from 0 to 2 wt%, a decrease in the diffusion coefficient is observed owing to the formation of a stable and thicker passivation layer. Herein, a solid‐state synthesis of LiFe x Co 1−x PO4@C (X: 0.15) is reported, which is used as a cathode for lithium‐ion batteries. The use of lithium difluoro(oxalate)borate as an electrolyte additive takes part in the formation of a stable solid electrolyte interphase layer, hence improving the electrochemical stability.
doi_str_mv 10.1002/ente.202200988
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2761193200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761193200</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-65f354f36f842a30fa9e640ed0c39609aa4034e79eb9aac489d300dc54c86e5e3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWGqvnhe86KF1srtJd29qbG0hWKHVa9gmk2ZLmo35g-YifgQ_o5_ELZWe5g3zeG_4Oc6lCyMXgN5i0eCIAqUAUogTp0ddyYecSv_0qIU4dwZ1vQUAFzzmAes5X6FuMt3uyKNO89ZU5nrxqXLV4M2Dqez4_f6ZF0kbY0LmtqIqM1UjSU1FZnqT2eubyRu1QRLqKdpfvMDASHgvC34XkEA1mUmQrDuyNLlOrH3Z2FCy7Iomw1rXF85ZqvIaB_-z77xOJ6tgNgwXT_PgPhyWlDEx9L2UeTxlfio4VQxSJdHngAnETPogleLAOI4lrq2OuZAJA0hij8fCRw9Z37k65JaVeW-xbqKtaavCVkZ07LuuZBacdcmD60Pn2EVlpXeq6iIXoj3jaM84OjKOJs-ryXFjfysedGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761193200</pqid></control><display><type>article</type><title>Lithium Difluoro(Oxalate)Borate‐Induced Interphase for High‐Voltage LiFe0.15Co0.85PO4@C Cathode by Solid‐State Synthesis</title><source>Wiley Online Library</source><creator>Sreedeep, Sreekumar ; Natarajan, Subramanian ; Lee, Yun-Sung ; Aravindan, Vanchiappan</creator><creatorcontrib>Sreedeep, Sreekumar ; Natarajan, Subramanian ; Lee, Yun-Sung ; Aravindan, Vanchiappan</creatorcontrib><description>Herein, the effect of lithium difluoro(oxalate)borate (LiDFOB) as an electrolyte additive on the electrochemical performance of LiFe0.15Co0.85PO4@C (LFCP@C) cathode, synthesized by a scalable solid‐state synthesis method is reported. Galvanostatic studies revealed better electrochemical performance among the LFCP@C (LiDFOB: 0.5–2 wt%) in a half‐cell assembly compared to the LiFe0.15Co0.85PO4 in the absence of LiDFOB. Also, among the various concentrations of LiDFOB, the LFCP@C (LiDFOB—1.5 wt%) and LFCP@C (LiDFOB—2 wt%) are optimized as suitable candidates for further electrochemical studies owing to the high discharge capacities of 116 and 118 mAh g−1. In addition, the electrochemical impedance studies (EIS) exhibited an increase in the charge–transfer resistance (R ct) as the amount of LiDFOB was increased, whereas a lower R ct value is observed in the absence of additive. In addition, the diffusion coefficient calculation is calculated using the EIS data, which shows a diffusion coefficient in the order of ≈10−13 cm2 s−1. However, as the amount of LiDFOB is increased from 0 to 2 wt%, a decrease in the diffusion coefficient is observed owing to the formation of a stable and thicker passivation layer. Herein, a solid‐state synthesis of LiFe x Co 1−x PO4@C (X: 0.15) is reported, which is used as a cathode for lithium‐ion batteries. The use of lithium difluoro(oxalate)borate as an electrolyte additive takes part in the formation of a stable solid electrolyte interphase layer, hence improving the electrochemical stability.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202200988</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Charge transfer ; Chemical synthesis ; Diffusion coefficient ; Electrochemical analysis ; Electrochemistry ; electrolyte additives ; Fe doping ; high-voltage cathodes ; LiCoPO4 ; Lithium ; lithium-ion batteries ; Mathematical analysis</subject><ispartof>Energy technology (Weinheim, Germany), 2023-01, Vol.11 (1), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1357-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202200988$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202200988$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sreedeep, Sreekumar</creatorcontrib><creatorcontrib>Natarajan, Subramanian</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><creatorcontrib>Aravindan, Vanchiappan</creatorcontrib><title>Lithium Difluoro(Oxalate)Borate‐Induced Interphase for High‐Voltage LiFe0.15Co0.85PO4@C Cathode by Solid‐State Synthesis</title><title>Energy technology (Weinheim, Germany)</title><description>Herein, the effect of lithium difluoro(oxalate)borate (LiDFOB) as an electrolyte additive on the electrochemical performance of LiFe0.15Co0.85PO4@C (LFCP@C) cathode, synthesized by a scalable solid‐state synthesis method is reported. Galvanostatic studies revealed better electrochemical performance among the LFCP@C (LiDFOB: 0.5–2 wt%) in a half‐cell assembly compared to the LiFe0.15Co0.85PO4 in the absence of LiDFOB. Also, among the various concentrations of LiDFOB, the LFCP@C (LiDFOB—1.5 wt%) and LFCP@C (LiDFOB—2 wt%) are optimized as suitable candidates for further electrochemical studies owing to the high discharge capacities of 116 and 118 mAh g−1. In addition, the electrochemical impedance studies (EIS) exhibited an increase in the charge–transfer resistance (R ct) as the amount of LiDFOB was increased, whereas a lower R ct value is observed in the absence of additive. In addition, the diffusion coefficient calculation is calculated using the EIS data, which shows a diffusion coefficient in the order of ≈10−13 cm2 s−1. However, as the amount of LiDFOB is increased from 0 to 2 wt%, a decrease in the diffusion coefficient is observed owing to the formation of a stable and thicker passivation layer. Herein, a solid‐state synthesis of LiFe x Co 1−x PO4@C (X: 0.15) is reported, which is used as a cathode for lithium‐ion batteries. The use of lithium difluoro(oxalate)borate as an electrolyte additive takes part in the formation of a stable solid electrolyte interphase layer, hence improving the electrochemical stability.</description><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Diffusion coefficient</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>electrolyte additives</subject><subject>Fe doping</subject><subject>high-voltage cathodes</subject><subject>LiCoPO4</subject><subject>Lithium</subject><subject>lithium-ion batteries</subject><subject>Mathematical analysis</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxYMoWGqvnhe86KF1srtJd29qbG0hWKHVa9gmk2ZLmo35g-YifgQ_o5_ELZWe5g3zeG_4Oc6lCyMXgN5i0eCIAqUAUogTp0ddyYecSv_0qIU4dwZ1vQUAFzzmAes5X6FuMt3uyKNO89ZU5nrxqXLV4M2Dqez4_f6ZF0kbY0LmtqIqM1UjSU1FZnqT2eubyRu1QRLqKdpfvMDASHgvC34XkEA1mUmQrDuyNLlOrH3Z2FCy7Iomw1rXF85ZqvIaB_-z77xOJ6tgNgwXT_PgPhyWlDEx9L2UeTxlfio4VQxSJdHngAnETPogleLAOI4lrq2OuZAJA0hij8fCRw9Z37k65JaVeW-xbqKtaavCVkZ07LuuZBacdcmD60Pn2EVlpXeq6iIXoj3jaM84OjKOJs-ryXFjfysedGA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Sreedeep, Sreekumar</creator><creator>Natarajan, Subramanian</creator><creator>Lee, Yun-Sung</creator><creator>Aravindan, Vanchiappan</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1357-7717</orcidid></search><sort><creationdate>202301</creationdate><title>Lithium Difluoro(Oxalate)Borate‐Induced Interphase for High‐Voltage LiFe0.15Co0.85PO4@C Cathode by Solid‐State Synthesis</title><author>Sreedeep, Sreekumar ; Natarajan, Subramanian ; Lee, Yun-Sung ; Aravindan, Vanchiappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-65f354f36f842a30fa9e640ed0c39609aa4034e79eb9aac489d300dc54c86e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Diffusion coefficient</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>electrolyte additives</topic><topic>Fe doping</topic><topic>high-voltage cathodes</topic><topic>LiCoPO4</topic><topic>Lithium</topic><topic>lithium-ion batteries</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sreedeep, Sreekumar</creatorcontrib><creatorcontrib>Natarajan, Subramanian</creatorcontrib><creatorcontrib>Lee, Yun-Sung</creatorcontrib><creatorcontrib>Aravindan, Vanchiappan</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sreedeep, Sreekumar</au><au>Natarajan, Subramanian</au><au>Lee, Yun-Sung</au><au>Aravindan, Vanchiappan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Difluoro(Oxalate)Borate‐Induced Interphase for High‐Voltage LiFe0.15Co0.85PO4@C Cathode by Solid‐State Synthesis</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2023-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Herein, the effect of lithium difluoro(oxalate)borate (LiDFOB) as an electrolyte additive on the electrochemical performance of LiFe0.15Co0.85PO4@C (LFCP@C) cathode, synthesized by a scalable solid‐state synthesis method is reported. Galvanostatic studies revealed better electrochemical performance among the LFCP@C (LiDFOB: 0.5–2 wt%) in a half‐cell assembly compared to the LiFe0.15Co0.85PO4 in the absence of LiDFOB. Also, among the various concentrations of LiDFOB, the LFCP@C (LiDFOB—1.5 wt%) and LFCP@C (LiDFOB—2 wt%) are optimized as suitable candidates for further electrochemical studies owing to the high discharge capacities of 116 and 118 mAh g−1. In addition, the electrochemical impedance studies (EIS) exhibited an increase in the charge–transfer resistance (R ct) as the amount of LiDFOB was increased, whereas a lower R ct value is observed in the absence of additive. In addition, the diffusion coefficient calculation is calculated using the EIS data, which shows a diffusion coefficient in the order of ≈10−13 cm2 s−1. However, as the amount of LiDFOB is increased from 0 to 2 wt%, a decrease in the diffusion coefficient is observed owing to the formation of a stable and thicker passivation layer. Herein, a solid‐state synthesis of LiFe x Co 1−x PO4@C (X: 0.15) is reported, which is used as a cathode for lithium‐ion batteries. The use of lithium difluoro(oxalate)borate as an electrolyte additive takes part in the formation of a stable solid electrolyte interphase layer, hence improving the electrochemical stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202200988</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1357-7717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2023-01, Vol.11 (1), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2761193200
source Wiley Online Library
subjects Cathodes
Charge transfer
Chemical synthesis
Diffusion coefficient
Electrochemical analysis
Electrochemistry
electrolyte additives
Fe doping
high-voltage cathodes
LiCoPO4
Lithium
lithium-ion batteries
Mathematical analysis
title Lithium Difluoro(Oxalate)Borate‐Induced Interphase for High‐Voltage LiFe0.15Co0.85PO4@C Cathode by Solid‐State Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Difluoro(Oxalate)Borate%E2%80%90Induced%20Interphase%20for%20High%E2%80%90Voltage%20LiFe0.15Co0.85PO4@C%20Cathode%20by%20Solid%E2%80%90State%20Synthesis&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Sreedeep,%20Sreekumar&rft.date=2023-01&rft.volume=11&rft.issue=1&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202200988&rft_dat=%3Cproquest_wiley%3E2761193200%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761193200&rft_id=info:pmid/&rfr_iscdi=true