Multiple zeta star values on 3–2–1 indices

In 2008, Muneta found explicit evaluation of the multiple zeta star value ζ ⋆ ( { 3 , 1 } d ) , and in 2013, Yamamoto proved a sum formula for multiple zeta star values on 3–2–1 indices. In this paper, we provide another way of deriving the formulas mentioned above. It is based on our previous work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2023, Vol.60 (1), p.259-285
Hauptverfasser: Hessami Pilehrood, Kh, Pilehrood, T. Hessami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 1
container_start_page 259
container_title The Ramanujan journal
container_volume 60
creator Hessami Pilehrood, Kh
Pilehrood, T. Hessami
description In 2008, Muneta found explicit evaluation of the multiple zeta star value ζ ⋆ ( { 3 , 1 } d ) , and in 2013, Yamamoto proved a sum formula for multiple zeta star values on 3–2–1 indices. In this paper, we provide another way of deriving the formulas mentioned above. It is based on our previous work on generating functions for multiple zeta star values and also on constructions of generating functions for restricted sums of alternating Euler sums. As a result, the formulas obtained are simpler and computationally more effective than the known ones. Moreover, we give explicit evaluations of ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d ) and ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d , { 2 } m + 1 ) , which are new and have not appeared in the literature before.
doi_str_mv 10.1007/s11139-022-00642-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760864275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760864275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bf228eff1ffdfa4737982d50e4b07ccbf75892fd4594fa7d14ded0372597c2e13</originalsourceid><addsrcrecordid>eNp9ULtOxDAQtBBIHAc_QBWJ2sd67ZzjEp2AQzpEA7Xl-IFyCkmwc0hQ8Q_8IV-CIUh0FKudYmZ2dgg5ZbBgAPI8Mca4ooBIAZYCqdojM1bKDDjw_Yx5hVSAgkNylNIWAARwOSOL2107NkPrizc_miKNJhYvpt35VPRdwT_fPzAPK5rONdanY3IQTJv8ye-ek4ery_vVmm7urm9WFxtqOVMjrQNi5UNgIbhghORSVehK8KIGaW0dZFkpDE6USgQjHRPOu5wHSyUtesbn5GzyHWL_nMOMetvvYpdPapRLqPKLsswsnFg29ilFH_QQmycTXzUD_d2LnnrRuRf904tWWcQnUcrk7tHHP-t_VF9AdGWm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760864275</pqid></control><display><type>article</type><title>Multiple zeta star values on 3–2–1 indices</title><source>SpringerLink Journals</source><creator>Hessami Pilehrood, Kh ; Pilehrood, T. Hessami</creator><creatorcontrib>Hessami Pilehrood, Kh ; Pilehrood, T. Hessami</creatorcontrib><description>In 2008, Muneta found explicit evaluation of the multiple zeta star value ζ ⋆ ( { 3 , 1 } d ) , and in 2013, Yamamoto proved a sum formula for multiple zeta star values on 3–2–1 indices. In this paper, we provide another way of deriving the formulas mentioned above. It is based on our previous work on generating functions for multiple zeta star values and also on constructions of generating functions for restricted sums of alternating Euler sums. As a result, the formulas obtained are simpler and computationally more effective than the known ones. Moreover, we give explicit evaluations of ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d ) and ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d , { 2 } m + 1 ) , which are new and have not appeared in the literature before.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-022-00642-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory ; Sums</subject><ispartof>The Ramanujan journal, 2023, Vol.60 (1), p.259-285</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bf228eff1ffdfa4737982d50e4b07ccbf75892fd4594fa7d14ded0372597c2e13</citedby><cites>FETCH-LOGICAL-c319t-bf228eff1ffdfa4737982d50e4b07ccbf75892fd4594fa7d14ded0372597c2e13</cites><orcidid>0000-0002-8429-3490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-022-00642-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-022-00642-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hessami Pilehrood, Kh</creatorcontrib><creatorcontrib>Pilehrood, T. Hessami</creatorcontrib><title>Multiple zeta star values on 3–2–1 indices</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In 2008, Muneta found explicit evaluation of the multiple zeta star value ζ ⋆ ( { 3 , 1 } d ) , and in 2013, Yamamoto proved a sum formula for multiple zeta star values on 3–2–1 indices. In this paper, we provide another way of deriving the formulas mentioned above. It is based on our previous work on generating functions for multiple zeta star values and also on constructions of generating functions for restricted sums of alternating Euler sums. As a result, the formulas obtained are simpler and computationally more effective than the known ones. Moreover, we give explicit evaluations of ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d ) and ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d , { 2 } m + 1 ) , which are new and have not appeared in the literature before.</description><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Sums</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOxDAQtBBIHAc_QBWJ2sd67ZzjEp2AQzpEA7Xl-IFyCkmwc0hQ8Q_8IV-CIUh0FKudYmZ2dgg5ZbBgAPI8Mca4ooBIAZYCqdojM1bKDDjw_Yx5hVSAgkNylNIWAARwOSOL2107NkPrizc_miKNJhYvpt35VPRdwT_fPzAPK5rONdanY3IQTJv8ye-ek4ery_vVmm7urm9WFxtqOVMjrQNi5UNgIbhghORSVehK8KIGaW0dZFkpDE6USgQjHRPOu5wHSyUtesbn5GzyHWL_nMOMetvvYpdPapRLqPKLsswsnFg29ilFH_QQmycTXzUD_d2LnnrRuRf904tWWcQnUcrk7tHHP-t_VF9AdGWm</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hessami Pilehrood, Kh</creator><creator>Pilehrood, T. Hessami</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8429-3490</orcidid></search><sort><creationdate>2023</creationdate><title>Multiple zeta star values on 3–2–1 indices</title><author>Hessami Pilehrood, Kh ; Pilehrood, T. Hessami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bf228eff1ffdfa4737982d50e4b07ccbf75892fd4594fa7d14ded0372597c2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hessami Pilehrood, Kh</creatorcontrib><creatorcontrib>Pilehrood, T. Hessami</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hessami Pilehrood, Kh</au><au>Pilehrood, T. Hessami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple zeta star values on 3–2–1 indices</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2023</date><risdate>2023</risdate><volume>60</volume><issue>1</issue><spage>259</spage><epage>285</epage><pages>259-285</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In 2008, Muneta found explicit evaluation of the multiple zeta star value ζ ⋆ ( { 3 , 1 } d ) , and in 2013, Yamamoto proved a sum formula for multiple zeta star values on 3–2–1 indices. In this paper, we provide another way of deriving the formulas mentioned above. It is based on our previous work on generating functions for multiple zeta star values and also on constructions of generating functions for restricted sums of alternating Euler sums. As a result, the formulas obtained are simpler and computationally more effective than the known ones. Moreover, we give explicit evaluations of ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d ) and ζ ⋆ ( { { 2 } m , 3 , { 2 } m , 1 } d , { 2 } m + 1 ) , which are new and have not appeared in the literature before.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-022-00642-9</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8429-3490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2023, Vol.60 (1), p.259-285
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_2760864275
source SpringerLink Journals
subjects Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Sums
title Multiple zeta star values on 3–2–1 indices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20zeta%20star%20values%20on%203%E2%80%932%E2%80%931%20indices&rft.jtitle=The%20Ramanujan%20journal&rft.au=Hessami%20Pilehrood,%20Kh&rft.date=2023&rft.volume=60&rft.issue=1&rft.spage=259&rft.epage=285&rft.pages=259-285&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-022-00642-9&rft_dat=%3Cproquest_cross%3E2760864275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760864275&rft_id=info:pmid/&rfr_iscdi=true