Unsupervised Multi-Latent Space RL Framework for Video Summarization in Ultrasound Imaging

The COVID-19 pandemic has highlighted the need for a tool to speed up triage in ultrasound scans and provide clinicians with fast access to relevant information. To this end, we propose a new unsupervised reinforcement learning (RL) framework with novel rewards to facilitate unsupervised learning by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2023-01, Vol.27 (1), p.1-12
Hauptverfasser: Mathews, Roshan P, Panicker, Mahesh Raveendranatha, Hareendranathan, Abhilash R, Chen, Yale Tung, Jaremko, Jacob L, Buchanan, Brian, Narayan, Kiran Vishnu, Kesavadas, C, Mathews, Greeta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title IEEE journal of biomedical and health informatics
container_volume 27
creator Mathews, Roshan P
Panicker, Mahesh Raveendranatha
Hareendranathan, Abhilash R
Chen, Yale Tung
Jaremko, Jacob L
Buchanan, Brian
Narayan, Kiran Vishnu
Kesavadas, C
Mathews, Greeta
description The COVID-19 pandemic has highlighted the need for a tool to speed up triage in ultrasound scans and provide clinicians with fast access to relevant information. To this end, we propose a new unsupervised reinforcement learning (RL) framework with novel rewards to facilitate unsupervised learning by avoiding tedious and impractical manual labelling for summarizing ultrasound videos. The proposed framework is capable of delivering video summaries with classification labels and segmentations of key landmarks which enhances its utility as a triage tool in the emergency department (ED) and for use in telemedicine. Using an attention ensemble of encoders, the high dimensional image is projected into a low dimensional latent space in terms of: a) reduced distance with a normal or abnormal class (classifier encoder), b) following a topology of landmarks (segmentation encoder), and c) the distance or topology agnostic latent representation (autoencoders). The summarization network is implemented using a bi-directional long short term memory (Bi-LSTM) which utilizes the latent space representation from the encoder. Validation is performed on lung ultrasound (LUS), that typically represent potential use cases in telemedicine and ED triage acquired from different medical centers across geographies (India and Spain). The proposed approach trained and tested on 126 LUS videos showed high agreement with the ground truth with an average precision of over 80% and average \boldsymbol{F_{1}} score of well over \boldsymbol{44 \pm 1.7 \%}. The approach resulted in an average reduction in storage space of 77% which can ease bandwidth and storage requirements in telemedicine.
doi_str_mv 10.1109/JBHI.2022.3208779
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2760652411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9899716</ieee_id><sourcerecordid>2716943188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3006-f9d615c8dc015a36f294dbd48a9d8ca4f457b43efa067b2b5f9530fef3a8c9f3</originalsourceid><addsrcrecordid>eNpdkE1P4zAQQK0VaEGFH4BWWlnay15S_JE49pFFWygqQlraPXCJnHiMDElc7AQEvx5XLRzwxR7Pm9HMQ-iEkimlRJ1e_bmcTxlhbMoZkWWpvqFDRoXMWAr3Pt5U5QfoOMYHko5MX0p8RwdcUC4Uk4fobtXHcQ3h2UUw-HpsB5ct9AD9gG_XugH8b4FnQXfw4sMjtj7g_86Ax7dj1-ng3vTgfI9dj1ftEHT0Y2_wvNP3rr8_QvtWtxGOd_cELWd_l-eX2eLmYn5-tsgaTojIrDKCFo00DaGF5sIylZva5FIrIxud27wo65yD1USUNasLqwpOLFiuZaMsn6Df27br4J9GiEPVudhA2-oe_BgrVlKhck6lTOivL-iDH0OfhkuUIKJgOaWJoluqCT7GALZaB5eWfa0oqTbqq436aqO-2qlPNT93nce6A_NZ8SE6AT-2gAOAz7SSSqXx-DvaBYdm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760652411</pqid></control><display><type>article</type><title>Unsupervised Multi-Latent Space RL Framework for Video Summarization in Ultrasound Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Mathews, Roshan P ; Panicker, Mahesh Raveendranatha ; Hareendranathan, Abhilash R ; Chen, Yale Tung ; Jaremko, Jacob L ; Buchanan, Brian ; Narayan, Kiran Vishnu ; Kesavadas, C ; Mathews, Greeta</creator><creatorcontrib>Mathews, Roshan P ; Panicker, Mahesh Raveendranatha ; Hareendranathan, Abhilash R ; Chen, Yale Tung ; Jaremko, Jacob L ; Buchanan, Brian ; Narayan, Kiran Vishnu ; Kesavadas, C ; Mathews, Greeta</creatorcontrib><description><![CDATA[The COVID-19 pandemic has highlighted the need for a tool to speed up triage in ultrasound scans and provide clinicians with fast access to relevant information. To this end, we propose a new unsupervised reinforcement learning (RL) framework with novel rewards to facilitate unsupervised learning by avoiding tedious and impractical manual labelling for summarizing ultrasound videos. The proposed framework is capable of delivering video summaries with classification labels and segmentations of key landmarks which enhances its utility as a triage tool in the emergency department (ED) and for use in telemedicine. Using an attention ensemble of encoders, the high dimensional image is projected into a low dimensional latent space in terms of: a) reduced distance with a normal or abnormal class (classifier encoder), b) following a topology of landmarks (segmentation encoder), and c) the distance or topology agnostic latent representation (autoencoders). The summarization network is implemented using a bi-directional long short term memory (Bi-LSTM) which utilizes the latent space representation from the encoder. Validation is performed on lung ultrasound (LUS), that typically represent potential use cases in telemedicine and ED triage acquired from different medical centers across geographies (India and Spain). The proposed approach trained and tested on 126 LUS videos showed high agreement with the ground truth with an average precision of over 80% and average <inline-formula><tex-math notation="LaTeX">\boldsymbol{F_{1}}</tex-math></inline-formula> score of well over <inline-formula><tex-math notation="LaTeX"> \boldsymbol{44 \pm 1.7 \%}</tex-math></inline-formula>. The approach resulted in an average reduction in storage space of 77% which can ease bandwidth and storage requirements in telemedicine.]]></description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3208779</identifier><identifier>PMID: 36136928</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Attention Ensemble Encoders ; Coders ; COVID-19 ; Emergency medical care ; Emergency medical services ; Health care facilities ; Humans ; Image segmentation ; India ; Labelling ; Labels ; Learning ; Long short-term memory ; Lung - diagnostic imaging ; Network topologies ; Pandemics ; Representations ; Storage requirements ; Telemedicine ; Topology ; Ultrasonic imaging ; Ultrasonography ; Ultrasound ; Unsupervised learning ; Unsupervised Reinforcement Learning ; Video data ; Video Summarization</subject><ispartof>IEEE journal of biomedical and health informatics, 2023-01, Vol.27 (1), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3006-f9d615c8dc015a36f294dbd48a9d8ca4f457b43efa067b2b5f9530fef3a8c9f3</citedby><cites>FETCH-LOGICAL-c3006-f9d615c8dc015a36f294dbd48a9d8ca4f457b43efa067b2b5f9530fef3a8c9f3</cites><orcidid>0000-0001-6201-9258 ; 0000-0001-5273-0732 ; 0000-0001-8716-8751 ; 0000-0003-4914-8666 ; 0000-0002-5613-3609 ; 0000-0001-5511-7677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9899716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9899716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36136928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathews, Roshan P</creatorcontrib><creatorcontrib>Panicker, Mahesh Raveendranatha</creatorcontrib><creatorcontrib>Hareendranathan, Abhilash R</creatorcontrib><creatorcontrib>Chen, Yale Tung</creatorcontrib><creatorcontrib>Jaremko, Jacob L</creatorcontrib><creatorcontrib>Buchanan, Brian</creatorcontrib><creatorcontrib>Narayan, Kiran Vishnu</creatorcontrib><creatorcontrib>Kesavadas, C</creatorcontrib><creatorcontrib>Mathews, Greeta</creatorcontrib><title>Unsupervised Multi-Latent Space RL Framework for Video Summarization in Ultrasound Imaging</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description><![CDATA[The COVID-19 pandemic has highlighted the need for a tool to speed up triage in ultrasound scans and provide clinicians with fast access to relevant information. To this end, we propose a new unsupervised reinforcement learning (RL) framework with novel rewards to facilitate unsupervised learning by avoiding tedious and impractical manual labelling for summarizing ultrasound videos. The proposed framework is capable of delivering video summaries with classification labels and segmentations of key landmarks which enhances its utility as a triage tool in the emergency department (ED) and for use in telemedicine. Using an attention ensemble of encoders, the high dimensional image is projected into a low dimensional latent space in terms of: a) reduced distance with a normal or abnormal class (classifier encoder), b) following a topology of landmarks (segmentation encoder), and c) the distance or topology agnostic latent representation (autoencoders). The summarization network is implemented using a bi-directional long short term memory (Bi-LSTM) which utilizes the latent space representation from the encoder. Validation is performed on lung ultrasound (LUS), that typically represent potential use cases in telemedicine and ED triage acquired from different medical centers across geographies (India and Spain). The proposed approach trained and tested on 126 LUS videos showed high agreement with the ground truth with an average precision of over 80% and average <inline-formula><tex-math notation="LaTeX">\boldsymbol{F_{1}}</tex-math></inline-formula> score of well over <inline-formula><tex-math notation="LaTeX"> \boldsymbol{44 \pm 1.7 \%}</tex-math></inline-formula>. The approach resulted in an average reduction in storage space of 77% which can ease bandwidth and storage requirements in telemedicine.]]></description><subject>Attention Ensemble Encoders</subject><subject>Coders</subject><subject>COVID-19</subject><subject>Emergency medical care</subject><subject>Emergency medical services</subject><subject>Health care facilities</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>India</subject><subject>Labelling</subject><subject>Labels</subject><subject>Learning</subject><subject>Long short-term memory</subject><subject>Lung - diagnostic imaging</subject><subject>Network topologies</subject><subject>Pandemics</subject><subject>Representations</subject><subject>Storage requirements</subject><subject>Telemedicine</subject><subject>Topology</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><subject>Unsupervised learning</subject><subject>Unsupervised Reinforcement Learning</subject><subject>Video data</subject><subject>Video Summarization</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1P4zAQQK0VaEGFH4BWWlnay15S_JE49pFFWygqQlraPXCJnHiMDElc7AQEvx5XLRzwxR7Pm9HMQ-iEkimlRJ1e_bmcTxlhbMoZkWWpvqFDRoXMWAr3Pt5U5QfoOMYHko5MX0p8RwdcUC4Uk4fobtXHcQ3h2UUw-HpsB5ct9AD9gG_XugH8b4FnQXfw4sMjtj7g_86Ax7dj1-ng3vTgfI9dj1ftEHT0Y2_wvNP3rr8_QvtWtxGOd_cELWd_l-eX2eLmYn5-tsgaTojIrDKCFo00DaGF5sIylZva5FIrIxud27wo65yD1USUNasLqwpOLFiuZaMsn6Df27br4J9GiEPVudhA2-oe_BgrVlKhck6lTOivL-iDH0OfhkuUIKJgOaWJoluqCT7GALZaB5eWfa0oqTbqq436aqO-2qlPNT93nce6A_NZ8SE6AT-2gAOAz7SSSqXx-DvaBYdm</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Mathews, Roshan P</creator><creator>Panicker, Mahesh Raveendranatha</creator><creator>Hareendranathan, Abhilash R</creator><creator>Chen, Yale Tung</creator><creator>Jaremko, Jacob L</creator><creator>Buchanan, Brian</creator><creator>Narayan, Kiran Vishnu</creator><creator>Kesavadas, C</creator><creator>Mathews, Greeta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6201-9258</orcidid><orcidid>https://orcid.org/0000-0001-5273-0732</orcidid><orcidid>https://orcid.org/0000-0001-8716-8751</orcidid><orcidid>https://orcid.org/0000-0003-4914-8666</orcidid><orcidid>https://orcid.org/0000-0002-5613-3609</orcidid><orcidid>https://orcid.org/0000-0001-5511-7677</orcidid></search><sort><creationdate>20230101</creationdate><title>Unsupervised Multi-Latent Space RL Framework for Video Summarization in Ultrasound Imaging</title><author>Mathews, Roshan P ; Panicker, Mahesh Raveendranatha ; Hareendranathan, Abhilash R ; Chen, Yale Tung ; Jaremko, Jacob L ; Buchanan, Brian ; Narayan, Kiran Vishnu ; Kesavadas, C ; Mathews, Greeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3006-f9d615c8dc015a36f294dbd48a9d8ca4f457b43efa067b2b5f9530fef3a8c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention Ensemble Encoders</topic><topic>Coders</topic><topic>COVID-19</topic><topic>Emergency medical care</topic><topic>Emergency medical services</topic><topic>Health care facilities</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>India</topic><topic>Labelling</topic><topic>Labels</topic><topic>Learning</topic><topic>Long short-term memory</topic><topic>Lung - diagnostic imaging</topic><topic>Network topologies</topic><topic>Pandemics</topic><topic>Representations</topic><topic>Storage requirements</topic><topic>Telemedicine</topic><topic>Topology</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><topic>Unsupervised learning</topic><topic>Unsupervised Reinforcement Learning</topic><topic>Video data</topic><topic>Video Summarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathews, Roshan P</creatorcontrib><creatorcontrib>Panicker, Mahesh Raveendranatha</creatorcontrib><creatorcontrib>Hareendranathan, Abhilash R</creatorcontrib><creatorcontrib>Chen, Yale Tung</creatorcontrib><creatorcontrib>Jaremko, Jacob L</creatorcontrib><creatorcontrib>Buchanan, Brian</creatorcontrib><creatorcontrib>Narayan, Kiran Vishnu</creatorcontrib><creatorcontrib>Kesavadas, C</creatorcontrib><creatorcontrib>Mathews, Greeta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mathews, Roshan P</au><au>Panicker, Mahesh Raveendranatha</au><au>Hareendranathan, Abhilash R</au><au>Chen, Yale Tung</au><au>Jaremko, Jacob L</au><au>Buchanan, Brian</au><au>Narayan, Kiran Vishnu</au><au>Kesavadas, C</au><au>Mathews, Greeta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Multi-Latent Space RL Framework for Video Summarization in Ultrasound Imaging</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract><![CDATA[The COVID-19 pandemic has highlighted the need for a tool to speed up triage in ultrasound scans and provide clinicians with fast access to relevant information. To this end, we propose a new unsupervised reinforcement learning (RL) framework with novel rewards to facilitate unsupervised learning by avoiding tedious and impractical manual labelling for summarizing ultrasound videos. The proposed framework is capable of delivering video summaries with classification labels and segmentations of key landmarks which enhances its utility as a triage tool in the emergency department (ED) and for use in telemedicine. Using an attention ensemble of encoders, the high dimensional image is projected into a low dimensional latent space in terms of: a) reduced distance with a normal or abnormal class (classifier encoder), b) following a topology of landmarks (segmentation encoder), and c) the distance or topology agnostic latent representation (autoencoders). The summarization network is implemented using a bi-directional long short term memory (Bi-LSTM) which utilizes the latent space representation from the encoder. Validation is performed on lung ultrasound (LUS), that typically represent potential use cases in telemedicine and ED triage acquired from different medical centers across geographies (India and Spain). The proposed approach trained and tested on 126 LUS videos showed high agreement with the ground truth with an average precision of over 80% and average <inline-formula><tex-math notation="LaTeX">\boldsymbol{F_{1}}</tex-math></inline-formula> score of well over <inline-formula><tex-math notation="LaTeX"> \boldsymbol{44 \pm 1.7 \%}</tex-math></inline-formula>. The approach resulted in an average reduction in storage space of 77% which can ease bandwidth and storage requirements in telemedicine.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>36136928</pmid><doi>10.1109/JBHI.2022.3208779</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6201-9258</orcidid><orcidid>https://orcid.org/0000-0001-5273-0732</orcidid><orcidid>https://orcid.org/0000-0001-8716-8751</orcidid><orcidid>https://orcid.org/0000-0003-4914-8666</orcidid><orcidid>https://orcid.org/0000-0002-5613-3609</orcidid><orcidid>https://orcid.org/0000-0001-5511-7677</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2023-01, Vol.27 (1), p.1-12
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2760652411
source IEEE Electronic Library (IEL)
subjects Attention Ensemble Encoders
Coders
COVID-19
Emergency medical care
Emergency medical services
Health care facilities
Humans
Image segmentation
India
Labelling
Labels
Learning
Long short-term memory
Lung - diagnostic imaging
Network topologies
Pandemics
Representations
Storage requirements
Telemedicine
Topology
Ultrasonic imaging
Ultrasonography
Ultrasound
Unsupervised learning
Unsupervised Reinforcement Learning
Video data
Video Summarization
title Unsupervised Multi-Latent Space RL Framework for Video Summarization in Ultrasound Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Multi-Latent%20Space%20RL%20Framework%20for%20Video%20Summarization%20in%20Ultrasound%20Imaging&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Mathews,%20Roshan%20P&rft.date=2023-01-01&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3208779&rft_dat=%3Cproquest_RIE%3E2716943188%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760652411&rft_id=info:pmid/36136928&rft_ieee_id=9899716&rfr_iscdi=true