A new urban change detection method based on the local G and local spatial heteroscedasticity statistics
Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that c...
Gespeichert in:
Veröffentlicht in: | Transactions in GIS 2022-12, Vol.26 (8), p.3315-3329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3329 |
---|---|
container_issue | 8 |
container_start_page | 3315 |
container_title | Transactions in GIS |
container_volume | 26 |
creator | Chen, Yuzhou Tao, Ran |
description | Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city. |
doi_str_mv | 10.1111/tgis.13004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760542157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760542157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmNw4RdE4obU0aRpsh6nCcakSRwY58h1krVT144m07R_T7bujC_2Kz_-0EvIM0snLMZb2NR-wrI0FTdkxIRUSSEVu411JlnC5JTfkwfvt2kkRKFGpJrR1h7poS-hpVhBu7HU2GAx1F1LdzZUnaEleGto1KGytOkQGrqg0Jpr7fcQ6pirONd3Hq0BH2qsw4n6EFtn4R_JnYPG26drHpOfj_f1_DNZfS2W89kqwUwqkeQFMsGcKCU4y4sCAKVCYXhWuukUkRtpJHOlQ5RGgeKFyLlUBjKXI3CWjcnLsHffd78H64Pedoe-jSc1VzLNBWe5itTrQGF82PfW6X1f76A_aZbqs5P67KS-OBlhNsDHurGnf0i9Xiy_h5k_H7Z3pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760542157</pqid></control><display><type>article</type><title>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</title><source>EBSCO Business Source Complete</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yuzhou ; Tao, Ran</creator><creatorcontrib>Chen, Yuzhou ; Tao, Ran</creatorcontrib><description>Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.13004</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Change detection ; Datasets ; Detection ; Heterogeneity ; Patchiness ; Spatial heterogeneity ; Statistical methods ; Statistics ; Sustainable development ; Urban areas ; Urban development ; Urban planning ; Urbanization</subject><ispartof>Transactions in GIS, 2022-12, Vol.26 (8), p.3315-3329</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</citedby><cites>FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</cites><orcidid>0000-0002-1556-084X ; 0000-0002-4618-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftgis.13004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftgis.13004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Yuzhou</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><title>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</title><title>Transactions in GIS</title><description>Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.</description><subject>Change detection</subject><subject>Datasets</subject><subject>Detection</subject><subject>Heterogeneity</subject><subject>Patchiness</subject><subject>Spatial heterogeneity</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sustainable development</subject><subject>Urban areas</subject><subject>Urban development</subject><subject>Urban planning</subject><subject>Urbanization</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmNw4RdE4obU0aRpsh6nCcakSRwY58h1krVT144m07R_T7bujC_2Kz_-0EvIM0snLMZb2NR-wrI0FTdkxIRUSSEVu411JlnC5JTfkwfvt2kkRKFGpJrR1h7poS-hpVhBu7HU2GAx1F1LdzZUnaEleGto1KGytOkQGrqg0Jpr7fcQ6pirONd3Hq0BH2qsw4n6EFtn4R_JnYPG26drHpOfj_f1_DNZfS2W89kqwUwqkeQFMsGcKCU4y4sCAKVCYXhWuukUkRtpJHOlQ5RGgeKFyLlUBjKXI3CWjcnLsHffd78H64Pedoe-jSc1VzLNBWe5itTrQGF82PfW6X1f76A_aZbqs5P67KS-OBlhNsDHurGnf0i9Xiy_h5k_H7Z3pA</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Chen, Yuzhou</creator><creator>Tao, Ran</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1556-084X</orcidid><orcidid>https://orcid.org/0000-0002-4618-1893</orcidid></search><sort><creationdate>202212</creationdate><title>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</title><author>Chen, Yuzhou ; Tao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Change detection</topic><topic>Datasets</topic><topic>Detection</topic><topic>Heterogeneity</topic><topic>Patchiness</topic><topic>Spatial heterogeneity</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sustainable development</topic><topic>Urban areas</topic><topic>Urban development</topic><topic>Urban planning</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuzhou</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuzhou</au><au>Tao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</atitle><jtitle>Transactions in GIS</jtitle><date>2022-12</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>3315</spage><epage>3329</epage><pages>3315-3329</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.13004</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1556-084X</orcidid><orcidid>https://orcid.org/0000-0002-4618-1893</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2022-12, Vol.26 (8), p.3315-3329 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2760542157 |
source | EBSCO Business Source Complete; Wiley Online Library Journals Frontfile Complete |
subjects | Change detection Datasets Detection Heterogeneity Patchiness Spatial heterogeneity Statistical methods Statistics Sustainable development Urban areas Urban development Urban planning Urbanization |
title | A new urban change detection method based on the local G and local spatial heteroscedasticity statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20urban%20change%20detection%20method%20based%20on%20the%20local%20G%20and%20local%20spatial%20heteroscedasticity%20statistics&rft.jtitle=Transactions%20in%20GIS&rft.au=Chen,%20Yuzhou&rft.date=2022-12&rft.volume=26&rft.issue=8&rft.spage=3315&rft.epage=3329&rft.pages=3315-3329&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.13004&rft_dat=%3Cproquest_cross%3E2760542157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760542157&rft_id=info:pmid/&rfr_iscdi=true |