A new urban change detection method based on the local G and local spatial heteroscedasticity statistics

Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions in GIS 2022-12, Vol.26 (8), p.3315-3329
Hauptverfasser: Chen, Yuzhou, Tao, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3329
container_issue 8
container_start_page 3315
container_title Transactions in GIS
container_volume 26
creator Chen, Yuzhou
Tao, Ran
description Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.
doi_str_mv 10.1111/tgis.13004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2760542157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760542157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmNw4RdE4obU0aRpsh6nCcakSRwY58h1krVT144m07R_T7bujC_2Kz_-0EvIM0snLMZb2NR-wrI0FTdkxIRUSSEVu411JlnC5JTfkwfvt2kkRKFGpJrR1h7poS-hpVhBu7HU2GAx1F1LdzZUnaEleGto1KGytOkQGrqg0Jpr7fcQ6pirONd3Hq0BH2qsw4n6EFtn4R_JnYPG26drHpOfj_f1_DNZfS2W89kqwUwqkeQFMsGcKCU4y4sCAKVCYXhWuukUkRtpJHOlQ5RGgeKFyLlUBjKXI3CWjcnLsHffd78H64Pedoe-jSc1VzLNBWe5itTrQGF82PfW6X1f76A_aZbqs5P67KS-OBlhNsDHurGnf0i9Xiy_h5k_H7Z3pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760542157</pqid></control><display><type>article</type><title>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</title><source>EBSCO Business Source Complete</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Yuzhou ; Tao, Ran</creator><creatorcontrib>Chen, Yuzhou ; Tao, Ran</creatorcontrib><description>Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.13004</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Change detection ; Datasets ; Detection ; Heterogeneity ; Patchiness ; Spatial heterogeneity ; Statistical methods ; Statistics ; Sustainable development ; Urban areas ; Urban development ; Urban planning ; Urbanization</subject><ispartof>Transactions in GIS, 2022-12, Vol.26 (8), p.3315-3329</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</citedby><cites>FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</cites><orcidid>0000-0002-1556-084X ; 0000-0002-4618-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftgis.13004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftgis.13004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Yuzhou</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><title>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</title><title>Transactions in GIS</title><description>Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.</description><subject>Change detection</subject><subject>Datasets</subject><subject>Detection</subject><subject>Heterogeneity</subject><subject>Patchiness</subject><subject>Spatial heterogeneity</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sustainable development</subject><subject>Urban areas</subject><subject>Urban development</subject><subject>Urban planning</subject><subject>Urbanization</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmNw4RdE4obU0aRpsh6nCcakSRwY58h1krVT144m07R_T7bujC_2Kz_-0EvIM0snLMZb2NR-wrI0FTdkxIRUSSEVu411JlnC5JTfkwfvt2kkRKFGpJrR1h7poS-hpVhBu7HU2GAx1F1LdzZUnaEleGto1KGytOkQGrqg0Jpr7fcQ6pirONd3Hq0BH2qsw4n6EFtn4R_JnYPG26drHpOfj_f1_DNZfS2W89kqwUwqkeQFMsGcKCU4y4sCAKVCYXhWuukUkRtpJHOlQ5RGgeKFyLlUBjKXI3CWjcnLsHffd78H64Pedoe-jSc1VzLNBWe5itTrQGF82PfW6X1f76A_aZbqs5P67KS-OBlhNsDHurGnf0i9Xiy_h5k_H7Z3pA</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Chen, Yuzhou</creator><creator>Tao, Ran</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1556-084X</orcidid><orcidid>https://orcid.org/0000-0002-4618-1893</orcidid></search><sort><creationdate>202212</creationdate><title>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</title><author>Chen, Yuzhou ; Tao, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3674-59c141f4b6afe299aac67c4d23bf88cc2d6d61fbfcc6d7a72945267da3f5ca213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Change detection</topic><topic>Datasets</topic><topic>Detection</topic><topic>Heterogeneity</topic><topic>Patchiness</topic><topic>Spatial heterogeneity</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sustainable development</topic><topic>Urban areas</topic><topic>Urban development</topic><topic>Urban planning</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuzhou</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuzhou</au><au>Tao, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new urban change detection method based on the local G and local spatial heteroscedasticity statistics</atitle><jtitle>Transactions in GIS</jtitle><date>2022-12</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>3315</spage><epage>3329</epage><pages>3315-3329</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Accurate detection of urban changes is critical for guiding city planning that leads to smart and sustainable development. Few existing methods are able to detect urban changes in a timely manner while preserving great details of spatial heterogeneity. In this article, we propose a new method that combines two spatial statistics, namely the local G and local spatial heteroscedasticity. By jointly analyzing the results of both statistics, we design the Urban Development Index (UDI) to assess the types of urban changes that each spatial unit has been experiencing. Based on the sequences of UDI, we can understand the regional patterns of urban changes by linking to urban morphology. We conduct experiments with both a synthetic dataset and a Rwanda population dataset. The results demonstrate that our method can not only identify completed and ongoing phenomena of urban transition, but also unveil the heterogeneous nature of growth and/or shrinkage inside a city.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.13004</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1556-084X</orcidid><orcidid>https://orcid.org/0000-0002-4618-1893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-1682
ispartof Transactions in GIS, 2022-12, Vol.26 (8), p.3315-3329
issn 1361-1682
1467-9671
language eng
recordid cdi_proquest_journals_2760542157
source EBSCO Business Source Complete; Wiley Online Library Journals Frontfile Complete
subjects Change detection
Datasets
Detection
Heterogeneity
Patchiness
Spatial heterogeneity
Statistical methods
Statistics
Sustainable development
Urban areas
Urban development
Urban planning
Urbanization
title A new urban change detection method based on the local G and local spatial heteroscedasticity statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20urban%20change%20detection%20method%20based%20on%20the%20local%20G%20and%20local%20spatial%20heteroscedasticity%20statistics&rft.jtitle=Transactions%20in%20GIS&rft.au=Chen,%20Yuzhou&rft.date=2022-12&rft.volume=26&rft.issue=8&rft.spage=3315&rft.epage=3329&rft.pages=3315-3329&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.13004&rft_dat=%3Cproquest_cross%3E2760542157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760542157&rft_id=info:pmid/&rfr_iscdi=true