Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries

With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Vahdat-Nejad, Hamed, Mohammad Ghasem Akbari, Salmani, Fatemeh, Azizi, Faezeh, Hamid-Reza Nili-Sani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vahdat-Nejad, Hamed
Mohammad Ghasem Akbari
Salmani, Fatemeh
Azizi, Faezeh
Hamid-Reza Nili-Sani
description With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting users' opinions and sentiments regarding the conflict. The tweets' positive and negative sentiments are analyzed using a BERT-based model, and the time series associated with the frequency of positive and negative tweets for various countries is calculated. Then, we propose a method based on the neighborhood average for modeling and clustering the time series of countries. The clustering results provide valuable insight into public opinion regarding this conflict. Among other things, we can mention the similar thoughts of users from the United States, Canada, the United Kingdom, and most Western European countries versus the shared views of Eastern European, Scandinavian, Asian, and South American nations toward the conflict.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2760363143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760363143</sourcerecordid><originalsourceid>FETCH-proquest_journals_27603631433</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOC6kCZ9iNuiuHGjtdsS6FRTa6KZBH_fCn6Am3s4nDtjkZAyTTaZEAsWEw2cc1GUIs9lxJpTINIqudyd0gbhrdwWjrbDUZsrKNNBNQby6L7qbwhnNF4_piGoHZqOwPbQKKdtIKhsMN5ppBWb92okjH9csvV-V1eH5OnsKyD5drDBmSm1oiy4LGSaSfnf6wMEBEEv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760363143</pqid></control><display><type>article</type><title>Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries</title><source>Free E- Journals</source><creator>Vahdat-Nejad, Hamed ; Mohammad Ghasem Akbari ; Salmani, Fatemeh ; Azizi, Faezeh ; Hamid-Reza Nili-Sani</creator><creatorcontrib>Vahdat-Nejad, Hamed ; Mohammad Ghasem Akbari ; Salmani, Fatemeh ; Azizi, Faezeh ; Hamid-Reza Nili-Sani</creatorcontrib><description>With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting users' opinions and sentiments regarding the conflict. The tweets' positive and negative sentiments are analyzed using a BERT-based model, and the time series associated with the frequency of positive and negative tweets for various countries is calculated. Then, we propose a method based on the neighborhood average for modeling and clustering the time series of countries. The clustering results provide valuable insight into public opinion regarding this conflict. Among other things, we can mention the similar thoughts of users from the United States, Canada, the United Kingdom, and most Western European countries versus the shared views of Eastern European, Scandinavian, Asian, and South American nations toward the conflict.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Modelling ; Time series ; Trends</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Vahdat-Nejad, Hamed</creatorcontrib><creatorcontrib>Mohammad Ghasem Akbari</creatorcontrib><creatorcontrib>Salmani, Fatemeh</creatorcontrib><creatorcontrib>Azizi, Faezeh</creatorcontrib><creatorcontrib>Hamid-Reza Nili-Sani</creatorcontrib><title>Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries</title><title>arXiv.org</title><description>With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting users' opinions and sentiments regarding the conflict. The tweets' positive and negative sentiments are analyzed using a BERT-based model, and the time series associated with the frequency of positive and negative tweets for various countries is calculated. Then, we propose a method based on the neighborhood average for modeling and clustering the time series of countries. The clustering results provide valuable insight into public opinion regarding this conflict. Among other things, we can mention the similar thoughts of users from the United States, Canada, the United Kingdom, and most Western European countries versus the shared views of Eastern European, Scandinavian, Asian, and South American nations toward the conflict.</description><subject>Clustering</subject><subject>Modelling</subject><subject>Time series</subject><subject>Trends</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOC6kCZ9iNuiuHGjtdsS6FRTa6KZBH_fCn6Am3s4nDtjkZAyTTaZEAsWEw2cc1GUIs9lxJpTINIqudyd0gbhrdwWjrbDUZsrKNNBNQby6L7qbwhnNF4_piGoHZqOwPbQKKdtIKhsMN5ppBWb92okjH9csvV-V1eH5OnsKyD5drDBmSm1oiy4LGSaSfnf6wMEBEEv</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Vahdat-Nejad, Hamed</creator><creator>Mohammad Ghasem Akbari</creator><creator>Salmani, Fatemeh</creator><creator>Azizi, Faezeh</creator><creator>Hamid-Reza Nili-Sani</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230102</creationdate><title>Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries</title><author>Vahdat-Nejad, Hamed ; Mohammad Ghasem Akbari ; Salmani, Fatemeh ; Azizi, Faezeh ; Hamid-Reza Nili-Sani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27603631433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Modelling</topic><topic>Time series</topic><topic>Trends</topic><toplevel>online_resources</toplevel><creatorcontrib>Vahdat-Nejad, Hamed</creatorcontrib><creatorcontrib>Mohammad Ghasem Akbari</creatorcontrib><creatorcontrib>Salmani, Fatemeh</creatorcontrib><creatorcontrib>Azizi, Faezeh</creatorcontrib><creatorcontrib>Hamid-Reza Nili-Sani</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vahdat-Nejad, Hamed</au><au>Mohammad Ghasem Akbari</au><au>Salmani, Fatemeh</au><au>Azizi, Faezeh</au><au>Hamid-Reza Nili-Sani</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries</atitle><jtitle>arXiv.org</jtitle><date>2023-01-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>With Twitter's growth and popularity, a huge number of views are shared by users on various topics, making this platform a valuable information source on various political, social, and economic issues. This paper investigates English tweets on the Russia-Ukraine war to analyze trends reflecting users' opinions and sentiments regarding the conflict. The tweets' positive and negative sentiments are analyzed using a BERT-based model, and the time series associated with the frequency of positive and negative tweets for various countries is calculated. Then, we propose a method based on the neighborhood average for modeling and clustering the time series of countries. The clustering results provide valuable insight into public opinion regarding this conflict. Among other things, we can mention the similar thoughts of users from the United States, Canada, the United Kingdom, and most Western European countries versus the shared views of Eastern European, Scandinavian, Asian, and South American nations toward the conflict.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2760363143
source Free E- Journals
subjects Clustering
Modelling
Time series
Trends
title Russia-Ukraine war: Modeling and Clustering the Sentiments Trends of Various Countries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Russia-Ukraine%20war:%20Modeling%20and%20Clustering%20the%20Sentiments%20Trends%20of%20Various%20Countries&rft.jtitle=arXiv.org&rft.au=Vahdat-Nejad,%20Hamed&rft.date=2023-01-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2760363143%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760363143&rft_id=info:pmid/&rfr_iscdi=true